Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
\(B=\dfrac{xy}{xy}+\dfrac{\left(x-y\right)x}{x\left(x-y\right)}-\dfrac{y\left(x-y\right)}{y\left(x-y\right)}=1\)
2k6 thì dạng này EZ quá còn gì:)
\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)
\(\Leftrightarrow x-2\sqrt{xy}-15y=0\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\Leftrightarrow\sqrt{x}=5\sqrt{y}\Leftrightarrow x=25y\)
Khi đó : \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)
Ta có :\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)
\(\Leftrightarrow x+\sqrt{xy}-3\sqrt{xy}-15y=0\)
\(\Leftrightarrow x-2\sqrt{xy}+y-16y=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}-4\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+4\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-5\sqrt{y}=0\\\sqrt{x}+3\sqrt{y}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=5\sqrt{y}\\\sqrt{x}=-3\sqrt{y}\end{cases}}\)
\(\Leftrightarrow\sqrt{x}=5\sqrt{y}\)(do x,y>0)
\(\Leftrightarrow x=25y\)(*)
Thay (*) vào biểu thức E ta được: \(E=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=\frac{58y}{29y}=2\)
Vậy giá trị của biểu thức E là 2.
ta có:\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\Leftrightarrow x-2\sqrt{xy}-3y-15y=0\Leftrightarrow\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\Leftrightarrow\left(\sqrt{x}+3\sqrt{y}\right)\left(\sqrt{x}-5\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+3\sqrt{y}=0\\\sqrt{x}-5\sqrt{y}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-3\sqrt{y}\left(loai\left(vi-x,y>0\right)\right)\\\sqrt{x}=5\sqrt{y}\end{cases}}}\)
thay \(\sqrt{x}=5\sqrt{y}\) vào E ta có:
\(E=\frac{2\left(5\sqrt{y}\right)^2+5\sqrt{y.y}+3y}{\left(\sqrt{5y}\right)^2+5\sqrt{y.y}-y}=\frac{y\left(50+5+3\right)}{y\left(25+5-1\right)}=2\)
vậy E =2
Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))
\(\Leftrightarrow x=4y\)
Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)
\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)