K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Từ \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) Áp dụng TC DTSBN ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\Rightarrow x=y\\\frac{y}{z}=1\Rightarrow y=z\\\frac{z}{x}=1\Rightarrow z=x\end{cases}}\) \(\Rightarrow x=y=z\)

\(\Rightarrow A=\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

21 tháng 9 2017

cảm ơn bạn nhiều

23 tháng 11 2016

Ta có: x/y=y/z=z/x áp dụng tính chất dãy tỉ số bằng nhau ta được:

x/y=y/z=z/x=(x+y+z)/(y+z+x)=1

Do đó: x/y=1 suy ra x=y

y/z=1 suy ra y=z

z/x=1 suy ra x=z

Nên x=y=z 

Từ đó ta có: x^3333.z^6666/y^9999

=x^3333.x^6666/x^9999=1

29 tháng 7 2019

ta có :\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x+y+z\(\ne\)0

Áp dụng dãy tỉ số = nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

Khi đó : \(\frac{x}{y}=1\Leftrightarrow x=y\)

\(\frac{y}{z}=1\Leftrightarrow y=z\)

\(\frac{z}{x}=1\Leftrightarrow x=z\)

Suy ra : x=y=z

Ta có : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{y^{3333}.y^{6666}}{y^{9999}}=\frac{y^{9999}}{y^{9999}}=1\)(vì x=y=z)

Vậy x3333.x6666/y9999=1 với thỏa mãn yêu cầu bài cho.

29 tháng 7 2019

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\left(x+y+z\ne0\right)\Rightarrow x=y=z\Rightarrow\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)

1 tháng 11 2018

áp dụng t/c dãy ti số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\frac{x}{y}=1\Rightarrow x=y,\frac{y}{z}=1\Rightarrow y=z,\frac{z}{x}=1\Rightarrow z=x\left(1\right)\)

từ (1) => x=y=z

\(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)

2 tháng 11 2018

Theo tính chất dãy tỉ số bằng nhau: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Rightarrow x=y=z\)

Thay y và z bởi x (do x = y = z),ta được: \(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

16 tháng 7 2015

Bài 1: a/b=b/c=c/a chứ không phải c/d

áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

a/b=b/c=c/a=(a+b+c)/(b+c+a)=1

a/b=1 => a=b

b/c=1 => b=c

Vậy a=b=c

DD
22 tháng 6 2021

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{\left(x-z\right)\left(y-x\right)\left(y+z\right)}{xyz}=\frac{y.\left(-z\right).x}{xyz}=-1\)

30 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2

30 tháng 12 2016

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)

\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)

\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)

Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z

Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)