K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2020

TRẢ LỜI HỘ MK VS MK CÂN GẤP -_-

25 tháng 4

đã 4 năm trôi qua và ... tui ko bt

 

Không mất tính tổng quát giả sử x ≥ y

⇒x²<x²+8y≤x²+8x<(x+4)²

VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2

hoặc x²+8y=(x+2)2x²+8y=(x+2)² 

hoặc x²+8y=(x+3)²

Nếu x²+8y=(x+1)²

⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)

Nếu x²+8y=(x+2)²  ⇒8y=4x+4  ⇒2y=x+1

⇒[(x+1)2]²+8x  ⇒(x+12)²+8x là số chính phương.

⇒x²+34x+1=a² với a∈N

⇒(x+17)²−288=a²

        ⇒(x+17−a)(x+17+a)=288

Đến đây thì dễ rồi

Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)² 

⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)

Giả sử x ≤ y

Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2

=> y2 + 8x = (y+1)²

                      (y+2)²

                       (y+3)²

Xét TH1 : y2 + 8x = (y + 1)2

=> y2 + 8x = y2 + 2y +1

=> 8x - 2y = 1

=> 4x - y = 1212 => Loại vì x, y ∈ N*

Xét TH2: y2 + 8x = (y + 2)2

=> y2 + 8x = y2 + 4x + 4

=> 8x - 4y = 4

=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:

Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)

Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)

Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y

Xét TH3 : y2 + 8x = ( y +3 )2

=> y2 + 8x = y2 + 6y + 9

=> 8x - 6y = 9

=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*

Vậy (x,y) = (1;1)

cái dới không correct

18 tháng 12 2021

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

NV
2 tháng 1

Từ giả thiết:

\(3x^2+x=4y^2+y\Leftrightarrow\left(3x-4y\right)^2=12x^2+12y^2-24xy+\left(x-y\right)\)

\(\Leftrightarrow\left(3x-4y\right)^2=12\left(x-y\right)^2+\left(x-y\right)=\left(x-y\right)\left[12\left(x-y\right)+1\right]\)

Hiển nhiên ta có \(12\left(x-y\right)+1\) và \(x-y\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP \(\Rightarrow\) cả 2 số đều phải là SCP

 

Hay \(x-y\) là SCP