K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

Ta có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)

\(\Leftrightarrow\frac{x^4+y^4}{x^2y^2}\ge\frac{x^2+y^2}{xy}\Leftrightarrow\frac{x^4+y^4}{x^2y^2}\ge\frac{x^3y+xy^3}{x^2y^2}\)

\(\Leftrightarrow x^4+y^4\ge x^3y+xy^3\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(đúng)

Các phép biến đổi là tương đương suy ra đpcm
Dấu "=" xảy ra khi x=y

11 tháng 3 2019

cám ơn bạn nha

4 tháng 6 2017

nãy đánh đi đánh lại máy 2 lần => olm bị lỗi hay sao á , bị kiểu này suốt , bực mik quá 

================================

Hướng dẫn :

-C.M 2(x2 + y2 + z2 )\(\ge2\left(xy+yz+xz\right)\)( => dùng AM-GM)

- CM : x2 +1+y2+1+z2+1 \(\ge2\left(x+y+z\right)\) ( => nhóm x2 +1 , y2 +1  , z2 +1 => dùng AM -GM sau đó cộng vế với vế) 

Cộng vế với vế của 2 cái vừa c.m 

3(x2+y2+z2) +3 \(\ge12\)

Đến đây ok rồi

4 tháng 6 2017

\(\left(x-1\right)^2>=0< =>x^2>=2x-1.\)

Tương tự:\(y^2>=2y-1,z^2>=2z-1.\)

\(=>x^2+y^2+z^2>=2\left(x+y+z\right)-3.\left(1\right).\)

ta có:\(x^2+y^2+z^2>=xy+yz+xz.\)

Thật vậy khi ta nhân 2 vế với 2 rồi chuyển vế sẽ được

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>=0\left(lđ\right).\)

\(=>x^2+y^2+z^2>=xy+yz+xz< =>2\left(x^2+y^2+z^2\right)>=2\left(xy+yz+xz\right).\left(2\right).\)

Từ (1) và (2)

\(=>3\left(x^2+y^2+z^2\right)>=2\left(xy+yz+xz+x^2+y^2+z^2\right)-3=9.\)

\(=>x^2+y^2+z^2>=3\left(đpcm\right)\)

Dấu '=' xảy ra khi x=y=z=1

13 tháng 9 2019

Ta cần chứng minh:\(\frac{\left(x+1\right)^2}{4}\ge x\)

Thật vậy: \(\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^2-2x+1\ge0\)

\(\Leftrightarrow x^2+2x+1\ge4x\)

\(\Leftrightarrow\left(x+1\right)^2\ge4x\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{4}\ge x\)(đpcm)

12 tháng 12 2016

cau 1 de sai roi ban minh se chung minh

8351 mod 26=5

5n mod 26 chu chu ki 4 (5-25-21-1) ma 8241142 chia het cho 26

suy ra no khong chia het cho 26 xem lai di

4 tháng 7 2019

Ta có: (a2+b2)(x2+y2)=(ax+by)2

\(\Leftrightarrow\)a2x2+a2y2+b2x2+b2y2=a2x2+2abxy+b2y2

\(\Leftrightarrow\)a2y2-2abxy+b2x2=0

\(\Leftrightarrow\)(ay-bx)2=0

\(\Leftrightarrow\)ay=bx

\(\Leftrightarrow\)\(\frac{a}{x}\)=\(\frac{b}{y}\)

4 tháng 7 2019

#)Giải :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)

\(\Rightarrow a^2y^2+b^2x^2=2abxy\)

\(\Rightarrow a^2y^2+b^2x^2-2abxy=0\)

\(\Rightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Rightarrow ay=bx\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}\)(theo tính chất tỉ lệ thức) 

\(\Rightarrowđpcm\)

29 tháng 6 2017

Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow\) \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2=2axby\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2-2axby=0\)

\(\Leftrightarrow\) \(\left(ay-bx\right)^2=0\)

\(\Leftrightarrow\) \(ay-bx=0\)

\(\Leftrightarrow\) \(ay=bx\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

18 tháng 5 2017

khó quá