Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)
= (1 + 1/x)(1 + 1/y)
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy)
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\)
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)
Cho mình hỏi bài này sử dụng bđt cauchy trực tiếp luôn có được không?
\(yz\le\frac{\left(y+z\right)^2}{4}\Rightarrow\frac{x^2\left(y+z\right)}{yz}\ge\frac{4x^2}{y+z}\)
Do đó \(P\ge\frac{4x^2}{y+z}+\frac{4y^2}{z+x}+\frac{4z^2}{x+y}\ge\frac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\)(Vì x+y+z = 1)
Vậy Min P= 2. Dấu "=" có <=> x = y = z = 1/3.
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Áp dụng BĐT phụ \(4xy\le\left(x+y\right)^2\le1\)\(\Leftrightarrow xy\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Có \(K=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)\(=x^2+2x.\frac{1}{x}+\frac{1}{x^2}+y^2+2y.\frac{1}{y}+\frac{1}{y^2}\)\(=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+4\)
Áp dụng BĐT Cô-si cho 2 số dương \(x^2\)và \(y^2\), ta có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
Tương tự, ta có \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
Từ đó \(K\ge2xy+\frac{2}{xy}+4\)\(=32xy+\frac{2}{xy}-30xy+4\)
Áp dụng BĐT Cô-si cho 2 số dương \(32xy\)và \(\frac{2}{xy}\), ta có: \(32xy+\frac{2}{xy}\ge2\sqrt{32xy.\frac{2}{xy}}=16\)
Lại có \(xy\le\frac{1}{4}\Leftrightarrow-xy\ge-\frac{1}{4}\)nên \(K\ge16-\frac{30}{4}+4=\frac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy GTNN của K là \(\frac{25}{2}\)khi \(x=y=\frac{1}{2}\)
\(K=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+4=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16x^2}+\dfrac{15}{16y^2}+4\ge\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{2.15}{16xy}=5+\dfrac{2.15}{16xy}\)
\(x+y\ge2\sqrt{xy};\Rightarrow2\sqrt{xy}\le x+y\le1\Rightarrow2\sqrt{xy}\le1\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow K\ge5+\dfrac{2.15}{16.\dfrac{1}{4}}=\dfrac{25}{2}\)
\(P=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\) Nhân bung ra ghép cặp ,dùng cosy
\(P=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)
\(P=2+\left(\frac{1}{y}+\frac{1}{x}\right)+\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2\sqrt{\frac{1}{xy}}+2\sqrt{xy}+2\sqrt{\frac{xy}{ỹx}}.\) \(P=4+2\left(\sqrt{\frac{1}{xy}}\sqrt{xy}\right)\ge4+4\sqrt{\frac{xy}{xy}}=8.\). Dấu bằng trong các bất đẳng thức trên xẩy ra khi x = y , vì x2 + y2 = 1 và x , y dương nên : \(x=y=\frac{\sqrt{2}}{2}\) Khi đó P đạt giá trị nhỏ nhất Pmin = 8
Đính chính : Dòng thứ 4 từ trên xuông trong bài giải, viết đúng là \(P=4+2\left(\sqrt{xy}+\sqrt{\frac{1}{xy}}\right)\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\) ; \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(P=\left(x^2+\frac{1}{y^2}\right)+\left(y^2+\frac{1}{x^2}\right)\)
\(=\left(x^2+y^2\right)+\frac{x^2+y^2}{x^2y^2}\ge\frac{1}{2}+\frac{\frac{1}{2}}{\frac{1}{4^2}}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = y =1/2
Em không chắc em làm đúng không nhưng ra kết quả khác cô Chi. Sai thì cô bỏ qua cho em ạ
\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=\left(xy+\frac{1}{xy}\right)^2\). Dễ thấy \(0< xy\le\left(\frac{x+y}{2}\right)^2=\frac{1}{4}\)
Xét hàm số \(f\left(t\right)=t+\frac{t}{t}\)trên \((0;\frac{1}{4}]\). Lấy t1<t2 \(\in(0;\frac{1}{4}]\)
Xét \(f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(1-\frac{1}{t_1t_2}\right)\)Vì \(t_1;t_2\in(0;\frac{1}{4}]\Rightarrow1< \frac{1}{t_1t_2}\)
Từ đó dễ ràng nhận ra: \(f\left(t_1\right)-f\left(t_2\right)>0\)Vậy \(f\left(t\right)\)nghịch biến trên \((0;\frac{1}{4}]\)
Do đó mà \(f\left(\frac{1}{4}\right)\le f\left(t\right)\forall t\in(0;\frac{1}{4}]\). Hay \(\frac{17}{4}\le f\left(t\right)\forall t\in(0;\frac{1}{4}]\)
=> \(\frac{17}{4}\le xy+\frac{1}{xy}\Rightarrow\frac{287}{16}\le\left(xy+\frac{1}{xy}\right)^2=P\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)