Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(\Leftrightarrow2x^2-2xy+2y^2-2yz+2z^2-2xz=4\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=4\left(x^2+y^2-xy-xz-yz\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Leftrightarrow x=y=z\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4.\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(< =>2x^2-2xy+2y^2-2yz+2z^2-2xz=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(< =>2.\left(x^2+y^2+x^2-xy-xz-zy\right)=4.\left(x^2+y^2+z^2-xy-xz-zy\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(< =>\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)
\(< =>\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}< =>x=y=z}\)
x2 + y2 + z2 = xy + yz + zx
=>2.(x2+y2+z2)=2.(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x-y=0 và y-x=0 và z-x=0
<=>x=y và y=x và z=x
Vậy x=y=z
Ta có: x^2 +y^2+z^2=xy+yz+zx
=>2(x^2 +y^2+z^2)=2(xy+yz+zx)
=>2x^2+2y^2+2z^2=2xy+2yz+2zx
=>x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2=0
=>(x-y)^2+(y-z)^2+(z-x)^2=0
=>(x-y)^2=(y-z)^2=(z-x)^2=0
=>x=y=z
\(x^2+y^2+z^2=xy+yz+zx\)
=> \(2x^2+2y^2+2x^2=2xy+2yz+2zx\)
=> \(2x^2+2y^2+2x^2-2xy-2yz-2zx=0\)
=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
=> x -y =0 ; y - z=0 ; z - x=0
=> x =y; y =z; z=x
=> x=y=z