Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ ĐKĐB suy ra:
$-x^2+5xy+2y^2=3(x^2+y^2)$
$\Leftrightarrow 4x^2-5xy+y^2=0$
$\Leftrightarrow 4x(x-y)-y(x-y)=0$
$\Leftrightarrow (4x-y)(x-y)=0$
$\Rightarrow 4x=y$ hoặc $x=y$.
Nếu $4x=y$. Thay vô PT $(1)$ thì:
$x^2+(4x)^2=1\Rightarrow x=\pm \frac{1}{\sqrt{17}}$
$\Rightarrow x=\pm \frac{4}{\sqrt{17}}$ (tương ứng)
Trường hợp $x=y$ tương tự, ta tìm được $(x,y)=(\pm \frac{1}{\sqrt{2}}; \pm \frac{1}{\sqrt{2}})$
7a có: \(\frac{1}{2}=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow x+y\le1\)
Áp dụng BD7 Cauchy-SChwarz 7a có:
\(V7=\frac{x}{y+1}+\frac{y}{x+1}=x-\frac{xy}{y+1}+y-\frac{xy}{x+1}\)
\(\le x+y-\frac{\left(x^2+y^2\right)}{2}\left(\frac{1}{y+1}+\frac{1}{x+1}\right)\)
\(\le1-\frac{\frac{1}{2}}{2}\cdot\frac{4}{1+2}=\frac{2}{3}=VP\)
Dấu "='' khi \(x=y=\frac{1}{4}\)
\(\frac{1}{\left|x-y\right|}.\sqrt{x^6\left(x-y\right)^2}=\frac{1}{\left|x-y\right|}.x^3.\sqrt{\left(x-y\right)^2}=\frac{1}{\left|x-y\right|}.x^3\left(x-y\right)=\frac{x^3\left(x-y\right)}{\left|x-y\right|}\)
không khó quá.
giải giúp mik cái