Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow2x^2+x+a=\left(x+3\right)\cdot g\left(x\right)\\ \text{Thay }x=-3\Leftrightarrow18-3+a=0\Leftrightarrow a=-15\\ b,\Leftrightarrow x^3+ax^2-4=\left(x^2+4x+4\right)\cdot f\left(x\right)=\left(x+2\right)^2\cdot f\left(x\right)\\ \text{Thay }x=-2\Leftrightarrow-8+4a-4=0\\ \Leftrightarrow4a-12=0\Leftrightarrow a=3\)
\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)
a)\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x-2+x-2}{x^2-4}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x^2+2x-3}{x^2-4}\)
đầu bài sai rồi bạn ơi bạn cho x=0 thì \(A=\frac{3}{4}\)là số dương rồi
Với y = 0 thi 1 - xy = 0 là bình phương của số hữu tỷ
Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được
\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)
\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)
\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)
\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)
Vậy 1 - xy là bình phương của 1 số hữu tỷ
b) Vì \(\left|a\right|=\left|-a\right|\)\(\Rightarrow\)\(\left|x-2020\right|=\left|2020-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)biểu thức P(x), ta có:
\(\left|2020-x\right|+\left|x+2021\right|\ge\left|2020-x+x+2021\right|=4041\)
\(\Rightarrow\)\(P\left(x\right)\ge4041\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(2020-x\right)\left(x+2021\right)>0\)
\(\Leftrightarrow-2021< x< 2020\)
Vậy \(P\left(x\right)_{min}=4041\)\(\Leftrightarrow\)\(-2021< x< 2020\)
áp dụng đl ta-lét vào tam giác có:
\(\dfrac{BC}{CA}=\dfrac{DE}{EA}=\dfrac{BC}{5}=\dfrac{3}{8}=>BC=\dfrac{3}{8}.5=\dfrac{15}{8}=1,875\)
X = BC + CA = 1,875 + 5 = 6,875
a = 2, b = - 1
Giải chi tiết dùm mk dk k alibaba nguyễn