Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)
Phương trình trở thành :
\(2u^2+6x-\left(2x+6\right)t=0\)
\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)
đến đây thì ez rồi
c) Ta có :
\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)
\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)
\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)
ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)
\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)
Dấu bằng xảy ra khi x = 2
vậy x=2 là nghiệm của phương trình
a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với
ĐKXĐ :
- Vế trái \(x \ge \frac{4}{3}\)
- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)
Hai điều kiện trái ngược nhau
Vậy phương trình vô nghiệm .
1: \(Q=\dfrac{\left(ax+b\right)\left(x-5\right)+c\left(x^2+2006\right)}{\left(x-5\right)\left(x^2+2006\right)}\)
\(=\dfrac{ax^2-5a+bx-5b+cx^2+2006c}{\left(x-5\right)\left(x^2+2006\right)}\)
\(=\dfrac{x^2\left(a+c\right)+bx-5a-5b+2006c}{\left(x-5\right)\left(x^2+2006\right)}\)
=>a+c=79; b=1990; -5a-5b+2006c=142431
=>a+c=79; -5a+2006c=152381; b=1990
=>a=6093/2011; c=75,97
2: Khi x=2005/2006 thì \(P=\dfrac{79\cdot\left(\dfrac{2005}{2006}\right)^2+1990\cdot\dfrac{2005}{2006}+142431}{\left(\dfrac{2005}{2006}-5\right)\left(\dfrac{2005}{2006}^2+1\right)}\)
=-18069,12068
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)