Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(m^2+m+1\right)\ge0\)
\(\Rightarrow m\ge0\)
Khi đó: \(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m}\\x_2=m+1+\sqrt{m}\end{matrix}\right.\)
PT có nghiệm `<=> \Delta' >=0`
`<=> (m-1)^2-(m^2+2)>=0`
`<=>-2m-1>=0`
`<=>m <= -1/2`
Viet: `x_1+x_2=2m-2`
`x_1x_2=m^2+2`
`x_1^2+x_2^2=10`
`<=>(x_1+x_2)^2-2x_1x_2=10`
`<=>(2m-2)^2-2(m^2+2)=10`
`<=> 2m^2-8m=10`
`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)
Vậy `m=-1`.
Giả sử phương trình đã cho có 2 nghiệm x 1 và x 2 , theo hệ thức Vi-ét ta có:
x 1 + x 2 = -b/a = -[-2(m + 1)]/1 = 2(m + 1)/1 = 2(m + 1)
x 1 x 2 = c/a = ( m 2 + m - 1)/1 = m 2 + m – 1
x 1 2 + x 2 2 = x 1 + x 2 2 – 2 x 1 x 2 = 2 m + 2 2 – 2( m 2 + m – 1)
= 4 m 2 + 8m + 4 – 2 m 2 – 2m + 2 = 2 m 2 + 6m + 6
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
x1+x2=2m+2; x1x2=m^2+4
x1^2+2(m+1)x2<=2m^2+20
=>x1^2+x2(x1+x2)<=2m^2+20
=>x1^2+x2x1+x2^2<=2m^2+20
=>(x1+x2)^2-x1x2<=2m^2+20
=>(2m+2)^2-(m^2+4)<=2m^2+20
=>4m^2+8m+4-m^2-4-2m^2-20<=0
=>m^2-8m-20<=0
=>m<=-10 hoặc m>2
\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)
Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)
Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)
Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)
\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)
\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)
\(\Leftrightarrow m^2+8m-16\le0\)
\(\Leftrightarrow-10\le m\le2\)
Kết hợp điều kiện....
Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$
\(\Delta'=\left(m+1\right)^2-\left(m^2+m-1\right)\ge0\)
\(\Leftrightarrow m+2\ge0\Rightarrow m\ge-2\)
Khi đó theo hệ thức Viet : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+1\right)^2-2\left(m^2+m-1\right)=2m^2+6m+6\)
x2 - 2(m + 1)x + m2 + m - 1 = 0
\(\Delta\) = [-2(m + 1)]2 - 4.1.(m2 + m - 1) = 4(m2 + 2m + 1) - 4m2 - 4m + 4 = 4m2 + 8m + 4 - 4m2 - 4m + 4 = 4m + 8
Để pt có nghiệm thì \(\Delta\) \(\ge\) 0 \(\Leftrightarrow\) 4m + 8 \(\ge\) 0 \(\Leftrightarrow\) m \(\ge\) -2
Với m \(\ge\) -2 ta có:
x1 = \(\dfrac{2\left(m+1\right)+\sqrt{4m+8}}{2}=m+1+\sqrt{m+2}\)
x2 = \(\dfrac{2\left(m+1\right)-\sqrt{4m+8}}{2}=m+1-\sqrt{m+2}\)
x1 + x2 = m + 1 + \(\sqrt{m+2}\) + m + 1 - \(\sqrt{m+2}\) = 2m + 2
x1x2 = (m + 1 + \(\sqrt{m+2}\))(m + 1 - \(\sqrt{m+2}\)) = (m + 1)2 - m - 2 = m2 + 2m + 1 - m - 2 = m2 + m - 1 = \(\left(m+\dfrac{1-\sqrt{5}}{2}\right)\left(m+\dfrac{1+\sqrt{5}}{2}\right)\)
(x1)2 + (x2)2 = (m + 1 + \(\sqrt{m+2}\))2 + (m + 1 - \(\sqrt{m+2}\))2 = (x1 + x2)2 - 2x1x2 = (2m + 2)2 - 2(m2 + m - 1) = 4m2 + 8m + 4 - 2m2 - 2m + 2 = 2m2 + 6m + 6 = 2(m2 + 3m + 3)
Chúc bn học tốt!