K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

Áp dụng BĐT Cô-si cho 2015 số dương : x2015,x2015 và 2013 số 1. Ta có :

\(x^{2015}+x^{2015}+1+1+...+1\ge2015\sqrt[2015]{\left(x^2\right)^{2015}}=2015x^2\)

TT : \(y^{2015}+y^{2015}+1+1+...+1\ge2015y^2\)

\(z^{2015}+z^{2015}+1+1+...+1\ge2015z^2\)

Cộng 3 vế BĐT , ta được :

\(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x^2+y^2+z^2\le3\)

Dấu ' = " xảy ra khi x = y = z = 1

29 tháng 8 2016

\(Vì\)\(x^{2014}\ge0;y^{2014}\ge0;z^{2014}\ge0\)

Mà \(x^{2014}+y^{2014}+z^{2014}=3\)

=>\(x^{2014}=1;y^{2014}=1;z^{2014}=1\)

=>x=1;y=1;z=1

=>M=1+1+1=3

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)

3 tháng 8 2017

mình ko bít

3 tháng 8 2017

mà mình mới lớp 6 thui ahihi

26 tháng 1 2018

Ta co : (x+y)2≤2(x2+y2)

=> x+y≤\(\sqrt{2\left(x^2+y^2\right)}\)

=> \(\dfrac{z^2}{x+y}\ge\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Tuong tu: \(\dfrac{x^2}{y+z}\ge\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

\(\dfrac{y^2}{x+z}\ge\dfrac{y^2}{\sqrt{2\left(x+z\right)}}\)

VT≥\(\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\dfrac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Dat : \(\sqrt{y^2+z^2}=a\)

\(\sqrt{x^2+z^2}=b\)

\(\sqrt{x^2+y^2}=c\)

=> a+b+c=2015 , a2=y2+z2 , b2=x2+z2 , c2=x2+y2

=> VT≥ \(\dfrac{b^2+c^2-a^2}{2\sqrt{2}.a}+\dfrac{a^2+c^2-b^2}{2\sqrt{2}.b}+\dfrac{a^2+b^2-c^2}{2\sqrt{2}c}\)

\(\dfrac{1}{2\sqrt{2}}\left[\dfrac{\left(b+c\right)^2}{2a}+\dfrac{\left(a+b\right)^2}{2c}+\dfrac{\left(a+c\right)^2}{2b}-2015\right]\)

\(\dfrac{1}{2\sqrt{2}}\left[2\left(a+b+c\right)-2015\right]\)

= \(\dfrac{2015}{2\sqrt{2}}\)

28 tháng 10 2016

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

30 tháng 6 2017

Phải là giá trị nhỏ nhất nha bạn

Áp dụng BĐT Cô-si dạng Engel

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

30 tháng 6 2017

áp dụng bất đẳng thức cô si ta có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)

15 tháng 8 2020

\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)

dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)

28 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engelta có:

\(VT=\frac{700}{2\left(xy+yz+xz\right)}+\frac{386}{x^2+y^2+z^2}\)\(=\frac{\sqrt{700}^2}{2\left(xy+yz+xz\right)}+\frac{\sqrt{386}^2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\frac{\left(\sqrt{700}+\sqrt{386}\right)^2}{\left(x+y+z\right)^2}\)

\(=\left(\sqrt{700}+\sqrt{386}\right)^2>2015\left(x+y+z=1\right)\)