Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2013}+x^3=\sqrt{y-2013}+y^3\)
\(\Leftrightarrow\sqrt{x-2013}-\sqrt{y-2013}+x^3-y^3=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x-2013}+\sqrt{y-2013}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow B=\dfrac{2013x+2014y}{2013y+2014x}=1\)
Ở phần dấu tương đương thứ 3, có cần phải đặt điều kiện x, y khác 2013 không bạn vì nếu x,y =2013 thì mẫu của phân số bằng 0
a, bạn tự giải
b, \(\left\{{}\begin{matrix}\left(m-1\right)y=m+1\\x=m-1+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+1}{m-1}\\x=\dfrac{m^2-2m+1+m+1}{m-1}=\dfrac{m^2-m+2}{m-1}\end{matrix}\right.\)
Thay vào ta được \(\left(\dfrac{m^2-m+2}{m-1}\right)^2+\dfrac{2014\left(m+1\right)}{m-1}=2015\)
bạn ktra lại đề nhé
Bài 2:
b) Với y = 0 thì vt của pt thứ 2 = 0 => loại.
Xét y khác 0:
Nhân pt thứ nhất với \(\frac{7}{5}\) rồi trừ đi pt thứ 2 thu được:
\(\frac{14}{5}x^3+\frac{21}{5}x^2y-y^3-6xy^2=0\)
\(\Leftrightarrow\frac{1}{5}\left(x-y\right)\left(14x^2+35xy+5y^2\right)=0\)
Với x = y, thay vào pt thứ 2:
\(7x^3=7\Rightarrow x=1\Rightarrow y=1\)
Với \(14x^2+35xy+5y^2=0\)
\(\Leftrightarrow14\left(\frac{x}{y}\right)^2+35\left(\frac{x}{y}\right)+5=0\)
Đặt \(\frac{x}{y}=t\) suy ra: \(14t^2+35t+5=0\Rightarrow\left[{}\begin{matrix}t=\frac{-35+3\sqrt{105}}{28}\\t=\frac{-35-3\sqrt{105}}{28}\end{matrix}\right.\)
Nghiệm xấu quá, chị tự thay vào giải nốt :D. Nhớ check xem em có tính nhầm chỗ nào ko:D
3/ Sửa phân thức thứ 3 thành: \(\frac{1}{1+c^3}\).
Quy đồng lên ta cần chứng minh: \(\frac{\Sigma_{cyc}\left(1+a^3\right)\left(1+b^3\right)}{\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)}\ge\frac{3}{1+abc}\)
\(\Leftrightarrow abc\left(a^3b^3+b^3c^3+c^3a^3\right)+2abc\left(a^3+b^3+c^3\right)-3a^3b^3c^3-\left[a^3+b^3+c^3-3abc+2\left(a^3b^3+b^3c^3+c^3a^3\right)\right]\ge0\)Đến đây chắc là đổi biến sang pqr rồi làm nốt ạ! Hơi trâu bò tí, cách khác em chưa nghĩ ra.
\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)
\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)
\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)
Dấu "=" xảy ra khi \(x=\frac{1}{3}\)
a. Tớ chưa giải ra được, chờ xíu tớ suy nghĩ :>
b. Ta có \(15x^2-11x-14=\left(5x-7\right)\left(3x+2\right)\)
mà \(15x^2-11x-14⋮7\Rightarrow3x+2⋮7\) ( đpcm )
a. Ta có \(x+2014y+y+2014x=2015\left(x+y\right)⋮2015\)
mà \(\left(x+2014y\right)⋮2015\) \(\Rightarrow\left(y+2014x\right)⋮2015\) ( đpcm )