K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2020

Theo đề ta có :

\(2\sqrt{y}+\sqrt{z}=\frac{1}{\sqrt{x}}\\ 2\sqrt{xy}+\sqrt{xz}=1\left(1\right)\)

\(A=\frac{3yz}{x}+\frac{4zx}{y}+\frac{5xy}{z}=\left(\frac{yz}{x}+\frac{xz}{y}\right)+2\\ \left(\frac{yz}{x}+\frac{xy}{z}\right)+3\left(\frac{xz}{y}+\frac{xy}{z}\right)\ge2z+4y+6x\\ =4\left(x+y\right)+2\left(x+z\right)\ge8\sqrt{xy}+4\sqrt{xz}=4\left(2\sqrt{xy}+\sqrt{xz}\right)\left(2\right)\)

Từ (1),(2) suy ra : A\(\ge4\)

Vậy MinA = 4 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

6 tháng 5 2020

xin hỏi có thể giải thích hàng thứ 3 hôn ạ!!!!

\n
14 tháng 9 2020

ko bt nha

20 tháng 5 2020

Ta có : \(A^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng BĐT Cô-si cho 4 số dương,ta có ;

\(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2.x^2.y.z}{yz}}=4x\)

Tương tự : ....

\(\Rightarrow A^2\ge4\left(x+y+z\right)-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)

\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi x = y = z = 4

27 tháng 5 2020

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)

Khi đó \(a^2+b^2+c^2\ge12\) ta cần tìm GTNN của  \(A=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)

Ta có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

Mà \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\) ( cơ bản )

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge12-\left(a+b+c\right)\)

Chứng minh được \(a+b+c\le6\) là OKE nhưng có vẻ không ổn lắm :))

bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy

bài này dài,ngại làm

đặt là được

19 tháng 7 2017

Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

28 tháng 8 2017

Ta c/m BĐT mạnh hơn \(\frac{1}{x^5-x^2+3xy+6}+\frac{1}{y^5-y^2+3yz+6}+\frac{1}{z^5-z^2+3zx+6}\le\frac{1}{3}\)

Áp dụng BĐT AM-GM ta có: 

\(x^5+x+1\ge3x^2\)và \(2x^2+2\ge4x\)

\(\Rightarrow x^5-x^2+6\ge3x+3\)

\(\Rightarrow\frac{1}{x^5-x^2+3xy+6}\le\frac{1}{3(x+xy+1)}\)

\(P\le\frac{1}{3(x+xy+1)}+\frac{1}{3(y+yz+1)}+\frac{1}{3(z+zx+1)}=\frac{1}{3}\)

NV
6 tháng 4 2022

\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}+\dfrac{b}{\sqrt{ab+bc+ca+b^2}}+\dfrac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(P=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{c+a}.\dfrac{c}{2\left(c+b\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{c+a}+\dfrac{c}{2\left(c+b\right)}\right)=\dfrac{9}{4}\)

\(P_{max}=\dfrac{9}{4}\) khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\) hay \(\left(x;y;z\right)=\left(\dfrac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)