Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:
\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)
(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:
\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:
\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)
\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)
Vậy...
P/s: check xem em có tính sai chỗ nào không:v
Ta có :
\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\) (1)
Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :
\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)
\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\) (2)
Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)
Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)
Lập bảng biến thiên sau :
Từ đó suy ra :
\(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)
Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)
Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)
Ta có : \(P=\frac{\left(\frac{x}{y}\right)^3}{\frac{x}{y}+\frac{y}{z}}+\frac{\left(\frac{y}{z}\right)^3}{\frac{x}{y}+\frac{y}{z}}+\left(\frac{z}{x}\right)^2+\frac{15}{\frac{z}{x}}\)
Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\Rightarrow a,b,c=1,c>1\)
Biểu thức viết lại : \(P=\frac{a^3}{a+b}+\frac{b^3}{a+b}+c^2+\frac{15}{c}\)
Ta có : \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow\frac{a^3}{a+b}+\frac{b^3}{a+b}\ge ab=\frac{1}{c}\) vì a,b>0
Vậy \(P\ge\frac{1}{c}+c^2+\frac{15}{c}=c^2+\frac{16}{c}=f\left(c\right)\) với mọi \(c\in\left(1;+\infty\right)\)
Ta có \(f'\left(c\right)=2c-\frac{16}{c}\Rightarrow f'\left(c\right)=0\Leftrightarrow c=2\)
Lập bảng biến thiên ta có \(f'\left(c\right)\ge f\left(2\right)=12\) khi và chỉ khi \(c=2\Rightarrow a=b=\frac{1}{\sqrt{2}}\Rightarrow z=\sqrt{2}y=2x\)
Vậy giá trị nhỏ nhất P=12 khi và chỉ khi \(z=\sqrt{2}y=2x\)
Ta có :
\(P=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\) (1)
Theo bất đẳng thức Cô-si ta có :
\(\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge9\)
Vì \(x+y+z=1\) nên có
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{4}\)
Thế vào (1) ta có :
\(P\le\frac{3}{4}\) với mọi \(\left(x,y,z\right)\in D\)
Mặt khác lấy \(x=y=z=\frac{1}{3}\), khi đó \(\left(x,y,z\right)\in D\) ta có \(P=\frac{3}{4}\) vậy max \(P=\frac{3}{4}\)
Từ hệ thức :
\(y=tx+\left(1-t\right)z\)
Bất đẳng thức
\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)
Trở thành :
\(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)
hay
\(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)
Vận dụng bất đẳng thức tam giác cho
\(y=\left(1-t\right)x+tx\) ta có kết quả
Bất đẳng thức thứ hai, được chứng minh tương tự bởi
\(y=tx+\left(1-t\right)z\)
tương đương với :
\(y-x=\left(1-t\right)\left(z-x\right)\)
Áp dụng bất đẳng thức Cô - si, ta có :
\(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)
\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\) (1)
Lại theo bất đẳng thức Cô si thì :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\) (2)
Vì \(xyz=1\) nên ta có :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)
Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)
Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)