K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2019

\(\dfrac{21}{4x}+\dfrac{21}{4y}+\dfrac{21}{4z}=0\Leftrightarrow\dfrac{21}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\)

\(\Leftrightarrow\dfrac{xy+xz+yz}{xyz}=0\Leftrightarrow xy+xz+yz=0\) \(\Rightarrow\left\{{}\begin{matrix}xy=-xz-yz\\xz=-xy-yz\\yz=-xy-xz\end{matrix}\right.\)

Ta có:

\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự ta có \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(\Rightarrow A=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-x\right)\left(y-z\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{z^2\left(x-y\right)-z\left(x^2-y^2\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(z^2-xz-yz+xy\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{\left(x\left(y-z\right)-z\left(y-z\right)\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-z\right)\left(y-z\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

NV
12 tháng 3 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh

18 tháng 3 2018

  Ta có 1/x+1/y+1/z=0 
=>1/x+1/y=-1/z 
=>(1/x+1/y)^3= (-1/z)^3 
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3 
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z) 
Mặt khác: 1/x+1/y+1/z=0 
=>(xy+yz+zx)/(xyz)=0 
=>xy+yz+zx=0 
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy 
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0) 
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0) 
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) ) 
=3 
Vậy A=3.

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)

22 tháng 1 2019

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{0}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy \(A=0.\)

3 tháng 3 2019

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{0\Rightarrow\left(yz+xz+xy\right)}{xyz}=0\Rightarrow xy+xz+xy=0\)

ta có x2+2yz=x2+yz+yz=x2-yz-zx-xy=x.(x-z)-y.(x-z)=(x-y).(x-z)

tương tự ta có:x2+2xy=(x-z)*(y-z)

vậy\(A=\dfrac{yz}{\left(x-y\right).\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)a

\(A=\dfrac{yz\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{xz\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}+\dfrac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(y-z\right)\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

2 tháng 5 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) (\(x,y,z\ne0;x\ne y\ne z\)

\(\Leftrightarrow xy+yz+xz=0\)

\(\Leftrightarrow2yz=yz-xy-xz\)

\(\Leftrightarrow x^2+2yz=\left(x-y\right)\left(x-z\right)\)

CMTT : \(\left\{{}\begin{matrix}y^2+2xz=\left(y-z\right)\left(y-x\right)\\z^2+2xy=\left(z-x\right)\left(z-y\right)\end{matrix}\right.\)

\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2-xz-yz+xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{x\left(y-z\right)-z\left(y-z\right)}{\left(x-z\right)\left(y-1\right)}=1\)

Thề, gõ máy mệt gấp đôi viết tay =))

2 tháng 5 2021

em cảm ơn ạ yeu