Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh xét hiệu P - 3/2 rồi làm như cách của em: Câu hỏi của Namek kian - Toán lớp 9 ạ ! Từ đó suy ra P >= 3/2. Hoặc có thể làm thẳng luôn như 4 bạn kia.
\(P=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)-3\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\ge\frac{9}{2\left(x+y+z\right)}\)
\(\Leftrightarrow P\ge\left(x+y+z\right).\frac{9}{2\left(x+y+z\right)}-3=\frac{3}{2}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(x=y=z\)
:))
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)
Dấu "=" xảy ra khi:
\(x=y=z=\frac{2}{3}\)
Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\) ( 1 )
Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ( 2 )
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\) ( 3 )
Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)
\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)
Áp dụng BĐT Cosi ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2y\left(1\right)\)
Tương tự ta cũng có: \(\frac{yz}{x}+\frac{xz}{y}\ge2z\left(2\right);\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng (1),(2),(3) vế theo vế ta được;
\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)\ge2\left(x+y+z\right)=2.2019=4038\)
\(\Rightarrow2P\ge4038\)
\(\Rightarrow P\ge2019\)
Dấu "=" xảy ra khi x = y = z = 673
Vậy Pmin = 2019 khi x = y = z = 673
Nhớ mang máng câu này hồi trước có giải rồi. Thôi tự vô tìm đi nha
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?
Ta sẽ chứng minh BĐT phụ sau : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{3^2}{a+b+c}=\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Trong đó : \(\hept{\begin{cases}a=x+y\\b=y+z\\c=z+x\end{cases}}\) , Ta có :
\(\left(x+y+y+z+x+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge9\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge4,5\)
\(\Leftrightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}\ge4,5\)
\(\Leftrightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{x+z}\ge4,5\)
\(\Leftrightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{z+y}\ge1,5\)
\(\Rightarrow P_{min}=1,5\) " = " \(\Leftrightarrow x=y=z\)
Chúc bạn học tốt !!!
đây là cách lớp 9 nên cố hiểu nhá , ngoài ra có thể tham khảo ở sách nâng cao và phát triển toán 8 trang 43
áp dụng BĐT cosi cho 3 số dương ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
với a=y+z, b=z+x, c=x+y ta đc
\(2\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\ge9\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\ge4,5\)
\(\Rightarrow\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}\ge4,5\)
\(\Rightarrow\frac{x}{y+x}+1+\frac{y}{x+z}+1+\frac{z}{x+y}+1\ge4,5\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge1,5\)
vậy minA=1,5 khi y+z=x+z=x+y khi x=y=z
\(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\)( 1 )
Theo hệ quả của bất đẳng thức Cauchy ta có
\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow\frac{x^2+y^2+z^2}{xy+yz+xz}\ge1\)
\(\Rightarrow\frac{x^2+y^2+z^2}{2\left(xy+yz+xz\right)}\ge\frac{1}{2}\)
Từ ( 1 )
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{zy+xy}+\frac{z^2}{xz+yz}\ge\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\)
Vậy GTNN của \(P=\frac{1}{2}\)
Dấu " = " xảy ra khi \(x=y=z\)