K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A4
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
NT
0
7 tháng 10 2018
Theo bài ra, ta gọi \(y=x-1,z=x+1\)
\(x^3+y^3+z^3\)
\(=x^3+\left(x-1\right)^3+\left(x+1\right)^3\)
\(=3x^3+6x\)
\(=3\left(x^3-x\right)+9x\)
\(=3x\left(x^2-1\right)+9x\)
\(=3x\left(x-1\right)\left(x+1\right)+9x⋮9\)
DP
1
13 tháng 10 2020
Ta có: \(x^3;y^3\equiv1;-1\left(mod9\right)\Rightarrow x^6\equiv y^6\equiv1\left(mod9\right)\Rightarrow x^6-y^6⋮9\)
x; y không chia hết cho 3 nên có dạng 3x+ 1 hoặc 3x+2 (x \(\in Z\))
giả sử x = 3k +1; y= 3m +1 (k;m \(\in Z\)) => \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^3+y^3\right)\)= (x3 +y3)(3k +1 -3m -1)[(3k+1)2 +(3k+1)(3m+1) + (3m+1)2 ] = (x3+y3).9(k-m)(3k2 + 3k +3km + 3m2 +3m + 1) chia hết cho 9
giả sử x= 3k +1; y = 3m +2
\(x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^3-y^3\right)=\)(3k+1+ 3m+2)[(3k+1)2 -(3k+1)(3m+2) +(3m+2)2 ](x3 -y3) = 9(k+m+1)(3k2 +3m2 +3m +1) (x3-y3) chia hết cho 9
chứng minh xong