K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

x/y+y/x=x^2+y^2/xy​                       sử dụng bdt cosi =>x^2+y^2/xy+xy/x^2+y^2>=1

1 tháng 12 2019

ta có: \(M=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{xy}\cdot\frac{xy}{x^2+y^2}}=2\cdot\sqrt{1}=2\cdot1=2.\)

(Ở đây mình áp dụng BĐT Cauchy: \(a+b\ge2\sqrt{ab}\)nhé!)

Học tốt! ^3^

15 tháng 5 2018

Ta có: \(M=\frac{9}{xy}+\frac{17}{x^2+y^2}\) 

\(=\frac{18}{2xy}+\frac{17}{x^2+y^2}\) 

\(=\left(\frac{17}{x^2+y^2}+\frac{17}{2xy}\right)+\frac{1}{2xy}\) 

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(x,y>0), ta có: 

\(M\ge\frac{17.4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=\frac{68}{256}+\frac{2}{256}=\frac{35}{128}\)  

Dấu "=" xảy ra khi: \(x=y=8\)

8 tháng 1 2019

Áp dụng BĐT AM-GM ta có:

\(1=\frac{3}{x}+\frac{2}{y}\ge2.\sqrt{\frac{6}{xy}}\)

\(\Leftrightarrow1^2\ge4.\frac{6}{xy}\)

\(\Leftrightarrow1\ge\frac{24}{xy}\)

\(\Leftrightarrow xy\ge24\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{2}{y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)

Vậy \(xy_{min}=24\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)

8 tháng 1 2019

T nghĩ ra câu b rồi nhé Pain,bớt xạo lz!

b) Từ \(\frac{3}{x}+\frac{2}{y}=1\),ta có: \(x+y=1\left(x+y\right)=\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\)

Áp dụng BĐT Bunhiacopxki,ta có: \(\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{3}{x}.x}+\sqrt{\frac{2}{y}.y}\right)\)

\(=\left(\sqrt{3}+\sqrt{2}\right)^2=5+2\sqrt{6}\)

Vậy \(Min_{x+y}=5+2\sqrt{6}\Leftrightarrow\hept{\begin{cases}x=3+\sqrt{6}\\y=2+\sqrt{6}\end{cases}}\)

22 tháng 2 2020

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

10 tháng 5 2019

Dễ cm được: \(\frac{x}{y}+\frac{y}{x}\ge2\)

Ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2+3\)

\(=\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)+3\ge3\) (Do \(\frac{x}{y}+\frac{y}{x}\ge2\))

Vậy min bằng 3. "=" khi x=y

10 tháng 5 2019
https://i.imgur.com/BxcNwVX.jpg
26 tháng 12 2016

Ta có

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(=\left(\frac{1}{x^2+y^2+z^2}+\frac{\frac{4}{9}}{2xy}+\frac{\frac{4}{9}}{2yz}+\frac{\frac{4}{9}}{2zx}\right)+\frac{7}{9}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\ge\frac{\left(1+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{9}.\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{9}.\frac{9}{\frac{\left(x+y+z\right)^2}{3}}\)

\(=9+\frac{7}{9}.27=30\)

Vậy GTNN là 30 đạt được khi \(x=y=z=\frac{1}{3}\)

26 tháng 12 2016

lớp mấy

30 tháng 4 2019

CM : với a,b > 0 thì \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\frac{\left(a+b\right)^2}{4}\ge ab\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b

Ta có : P = \(\frac{5}{x^2+y^2}+\frac{3}{xy}=\left(\frac{5}{x^2+y^2}+\frac{5}{2xy}\right)+\frac{1}{2xy}=5.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=\frac{4}{9}\)

\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{2xy}\ge\frac{2}{\left(x+y\right)^2}=\frac{2}{9}\)

\(\Rightarrow P\ge5.\frac{4}{9}+\frac{2}{9}=\frac{22}{9}\)

Dấu " = "xảy ra \(\Leftrightarrow\)x = y = 1,5

30 tháng 4 2019

Thanks bạn nhiều lắm ạ