Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải;
Vế 1:
Áp dụng BĐT AM-GM:
$2=(x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow x+y\leq \sqrt{2}$
$x^3+\frac{x}{2}\geq \sqrt{2}x^2$
$y^3+\frac{y}{2}\geq \sqrt{2}y^2$
$\Rightarrow x^3+y^3+\frac{x+y}{2}\geq \sqrt{2}(x^2+y^2)=\sqrt{2}$
$\Rightarrow x^3+y^3\geq \sqrt{2}-\frac{x+y}{2}\geq \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$
-----------------------
Vế 2:
$x^2+y^2=1$
$\Rightarrow x^2=1-y^2\leq 1\Rightarrow -1\leq x\leq 1$
$y^2=1-x^2\leq 1\Rightarrow -1\leq y\leq 1$
$\Rightarrow x^3\leq x^2; y^3\leq y^2$
$\Rightarrow x^3+y^3\leq x^2+y^2$ hay $x^3+y^3\leq 1$
Ta có: \(\dfrac{x}{x^2+1}-\dfrac{1}{2}=\dfrac{-\left(x-1\right)^2}{x^2+1}\le0\)
\(\Rightarrow\dfrac{x}{x^2+1}\le\dfrac{1}{2}\) ;\(\forall x\)
Mặt khác: \(y^2-4y+5=\left(y-2\right)^2+1\ge1\)
\(\Rightarrow y^2-4y+5>\dfrac{x}{x^2+1}\) ; \(\forall x;y\)
\(\Rightarrow\) Không tồn tại x, y thỏa mãn yêu cầu đề bài
Ta có:
\(x^2+y^2-2xy+2x-4y+15=0\)
\(\Rightarrow\hept{\begin{cases}x^2-\left(2y-2\right)x+y^2-4y+15=0\\y^2-\left(2x+4\right)+x^2+2x+15=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta'_x=\left(y-1\right)^2-\left(y^2-4y+15\right)\ge0\\\Delta'_y=\left(x+2\right)^2-\left(x^2+2x+15\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ge7\\x\ge\frac{11}{2}\end{cases}}\)
\(\Rightarrow4x^2+y^2\ge4.\left(\frac{11}{2}\right)^2+7^2=170\)
Dễ thấy dấu = không xảy ra nên
\(\Rightarrow4x^2+y^2>170\)
Áp dụng BĐT Bunhiacopxki :
\(\left(x.\sqrt{1-y^2}+\sqrt{1-x^2}.y\right)^2\le\left(x^2+1-x^2\right).\left(y^2+1-y^2\right)\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}\le1\Rightarrow x^2+y^2\le1\)
Lại áp dụng BĐT Bunhiacopxki : \(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\le\left(3^2+4^2\right)\)
\(\Rightarrow\left(3x+4y\right)^2\le25\Rightarrow3x+4y\le5\)
tick mình xong mình giải cho