K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Do x,y tỉ lệ thuận nên k= \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_1} + {y_2}}}{{{x_1} + {x_2}}} = \frac{{ - 20}}{{15}} = \frac{{ - 4}}{3}\)

\(\begin{gathered} \frac{{{y_1}}}{{{x_1}}} = \frac{{ - 4}}{3} \hfill \\ \frac{{{y_1}}}{{1,5}} = \frac{{ - 4}}{3} \hfill \\ {y_1} = \frac{{1,5 \times ( - 4)}}{3} \hfill \\ {y_1} = - 2 \hfill \\ \end{gathered} \)

Tương tự cho x=-10 bạn nhé. 

26 tháng 11 2017

Vì y tỉ lệ thuận với x nên y = k.x ( k khác 0). Ta có x1+x2=15 và y1+y2= -20

Mà y1= k.x1 và y2= k.x nên y1+y2= -20 hay k.x1+ k.x=-20; k. (x1+ .x)=-20 suy ra: k. 15 = -20

k = -20:15 = -4/3

Vậy hệ số tỉ lệ của y đối với x là -4/3

Vì k =-4/3 nên y = -4/3 . x

Thay x = 1,5 =3/2 vào y = -4/3 . x, ta được  y = -4/3. 3/2= -2

Thay x = -10 vào y = -4/3 . x, ta được  y = -4/3. (-10)= 40/3

a: x và y tỉ lệ thuận với nhau

=>\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}=\dfrac{y_1+y_2}{x_1+x_2}=\dfrac{15}{-3}=-5\)

=>y=-5x

b: y=-5x

=>\(x=-\dfrac{1}{5}y\)

Thay y=-2 vào \(x=-\dfrac{1}{5}y\), ta được:

\(x=-\dfrac{1}{5}\cdot\left(-2\right)=\dfrac{2}{5}\)

Thay y=-9 vào x=-1/5y, ta được:

\(x=-\dfrac{1}{5}\cdot\left(-9\right)=\dfrac{9}{5}\)

a: x và y tỉ lệ thuận nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{x_1+x_2}{y_1+y_2}=\dfrac{6}{-2}=-3\)

=>x=-3y

b: x=-3y

=>\(y=-\dfrac{1}{3}x\)

Thay x=2 vào \(y=-\dfrac{1}{3}x\), ta được:

\(y=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)

Thay x=4 vào \(y=-\dfrac{1}{3}x\), ta được:

\(y=-\dfrac{1}{3}\cdot4=-\dfrac{4}{3}\)