Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1 ; x2 là 2 ngiệm của P(x) => P(x1) = P (x2) = 0
=> ax12 + bx1 + c = ax22 + bx2 + c = 0
=> ax12 + bx1 + c - ( ax22 + bx2 + c) = 0
<=> a. (x12 - x22 ) + b.(x1 - x2) = 0 <=> a. (x1 - x2). (x1 + x2) + b.(x1 - x2) = 0
<=> (x1 - x2). [ a.(x1 + x2) + b ] = 0 mà x1 ; x2 khác nhau nên a.(x1 + x2) + b = 0 => b = - a.(x1 + x2) (*)
+) ax12 + bx1 + c = 0 => c = - ( ax12 + bx1) = - x1. (ax1 + b) = - x1 . (-ax2) = ax1. x2 (Do (*))
vậy c = ax1.x2 (**)
Thay b ; c từ (*) và (**) vào P(x) ta được P(x) = ax2 -ax.(x1 + x2) + ax1.x2 = ax2 - ax.x1 - ax.x2 + ax1.x2
= ax. (x - x1) - ax2 . (x - x1) = (ax - ax2). (x - x1) = a. (x - x2). (x - x1) => ĐPCM
Chắc là \(q\left(x\right)=x^2-4????\)
\(f\left(2\right)=2^5+2^2+1=37\) ; \(f\left(-2\right)=-27\)
Do \(f\left(x\right)\) có 5 nghiệm nên f(x) có dạng:
\(f\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)
\(\Rightarrow f\left(2\right)=\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)=37\)
\(f\left(-2\right)=\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\left(-2-x_5\right)=-27\)
\(\Rightarrow\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)=27\)
\(A=\left(x_1^2-4\right)\left(x^2_2-4\right)\left(x_3^2-4\right)\left(x_4^2-4\right)\left(x^2_5-4\right)\)
\(A=-\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)\)
\(A=-37.27=-999\)
\(\sqrt{x_1^2-1^2}+2\sqrt{x^2_2-2^2}+...+100\sqrt{x_{100}^2-100^2}=\dfrac{1}{2}\left(x_1^2+x^2_2+...+x_{100}^2\right)\)
\(\Leftrightarrow2\sqrt{x_1^2-1^2}+4\sqrt{x^2_2-2^2}+...+200\sqrt{x_{100}^2-100^2}=x_1^2+x^2_2+...+x_{100}^2\)
\(\Leftrightarrow x_1^2-1-2\sqrt{x_1^2-1}+1+x^2_2-4-4\sqrt{x^2_2-4}+4+...+x^2_{100}-10000-200\sqrt{x_{100}^2-10000}+10000=0\)
\(\Leftrightarrow\left(\sqrt{x^2_1-1}-1\right)^2+\left(\sqrt{x^2_2-4}-2\right)^2+....+\left(\sqrt{x^2_{100}-10000}-100\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2_1-1}-1=0\\\sqrt{x^2_2-4}-2=0\\....\\\sqrt{x^2_{100}-10000}-100=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\sqrt{1^2+1}=\sqrt{2}\\x_2=\sqrt{2^2+4}=2\sqrt{2}\\....\\x_{100}=\sqrt{100^2+10000}=100\sqrt{2}\end{matrix}\right.\)
theo đề bài ta có:
\(\int\left(x_1\right)=2x_1+3\\ \int\left(x_2\right)=2x_2+3\\ suyra:\int\left(x_1\right)+\int\left(x_2\right)=2x_1+3+2x_2+3=2\cdot5+6=16\)
(có gì sai xin mọi người chỉ bảo thêm ạ!)
x1=a; x2=b
a)
(a+1)^2>=4a^2=(2a)^2
<=>(a+1-2a)(a+1+2a)>=0
<=>(1-a)(3a+1)>=0
a€[0;1]
3a+1>0
1-a>=0
=>dpcm