Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
IH vuông góc AB => ^AHI = 90
IK vuông góc AD => ^AKI = 90
=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp
b/ Xét tam giác ADI và tam giác BCI có
^AID=^BIC (góc đối đỉnh)
sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC
=> tg ADI đồng dạng tg BCI
=>\(\frac{IA}{IB}=\frac{ID}{IC}\)⇒IA.IC=IB.ID
c/
Xét tứ giác nội tiếp AHIK có
^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)
^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)
Xét tứ giác nội tiếp ABCD có
^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)
^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)
Xét hai tam giác HIK và tam giác BCD
Từ (1) và (3) => ^HIK = ^BCD
Từ (2) và (4) => ^KHI = ^DBC
=> tam giác HIK đồng dạng với tam giác BCD
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
tại sao phải đi cm M,N lần lượt là trung điểm của AB,AC trg khi nó có sẵn trg đề bài?
a) IH vuông góc với AB => góc AHI=90 độ
IK vuông góc với AC=> góc AKI=90 độ
Xét tứ giác AHIK có góc AHI+ góc AKI= 90 độ + 90 độ = 180 độ
Suy ra AHIK nt
b) Từ a) ta có: góc KAM = góc KHI (cùng chắn cung KI)
Trong đtron (O) có: góc KAM = góc MBC( gnt cùng chắn cung CM)
Suy ra: góc KHI=góc MBC
c)
1) Xét (o) có :
Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)
Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)
xét tứ giác ABOC có:
góc OBA+góc OCA =180 (cmt)
=> tứ giác ABOC là tứ giác nt (dhnb)
Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90
MI vuông góc với AB (theo đề bài )=>góc BIM = 90
Xét tứ giác BIMH có:
góc BHM+BIM=180 (cmt)
=>tứ giác BIMH là tứ giác nt
2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :
MH^2=MI . MK
3)
CM góc thì mình không biết đâu nhé!
c: AHIK nội tiếp
=>góc AIK=góc AHK
BHKC nội tiếp nên góc ICK=góc AHK
=>góc ICK=góc AIK
=>góc AIC=90 độ
1) Vì một tam giác vuông luôn nội tiếp đường tròn đường kính = cạnh huyền
\(\Rightarrow\)Tam giác vuông BHF và tam giác BDH nội tiếp đường tròn đường kính BH
\(\Leftrightarrow\)4 điểm B,F,H,D cùng nằm trên đường tròn \(\Rightarrow\)Tứ giác BFHD nội tiếp đường tròn đường kính BH
a,TỨ GIÁC ĐẤY NT CM ĐC R NHA BN
b,bn cm thêm tứ giác HECD nt nứa xong suy ra góc HAE = HCE (1)
từ tứ giác ý a nt suy ra góc MDH =FBE (2)
TỨ giác EFBC nt suy ra góc FBE =FCE (3)
TỪ 1 2 VÀ 3 SUY RA DC LÀ PHÂN GIÁc
HAI GÓC VĨ T