K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy

24 tháng 8 2019

a, Trong \(\bigtriangleup{ABD}\) , ta có : MP là đường trung bình .

\(\Rightarrow\) MP // AD

MP = \(\dfrac{1}{2}\) AD

Ta có :

NQ // AD

MP = \(\dfrac{1}{2}\) AD

\(\Rightarrow\) PM = NQ (đpcm)

b,

Ta có : Tứ giác MPNQ là hình bình hành

\(\Rightarrow\) MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

\(\Rightarrow\) EF đi qua I

Vậy EF , MN và PQ đồng quy

31 tháng 10 2019

A B C D M Q N P I

gọi I là giao điểm của QM và BD

Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)

\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)

vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)

Ta có : MB = NB ; DP = DQ ; PC = NC 

nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)

do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng

từ đó ta được đpcm

17 tháng 10 2018

tui ko biết

17 tháng 10 2018

ê ko bt trả lời lm chi