Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
ΔOAB đồng dạng với ΔOCD
=>OB/OD=AB/DC=1/2
=>OB/1=OD/2=5/3
=>OB=5/3cm; OD=10/3cm
Gọi chiều cao AH là x :
Áp dụng công thức tính diện tích tam giác ta được :
\(\frac{1}{2}\).BC.AH = 120
\(\frac{1}{2}\).20.x =120
10x =120
x = 12
=) AH = 12 cm
b) Xét tam giác ABC có :
M là trung điểm của AB
N là trung điểm của AC
=) MN là đường trung bình của tam giác ABC
=) MN // BC ; MN=\(\frac{1}{2}\)BC
Xét tứ giác BMNC có
MN // BC
=) Tứ giác BMNC là hình thanh
Giả sử MN cắt AH tại K
Xét tam giác ABH có :
M là trung điểm của AB
MK // BH
=) K là trung điểm của AH
Do K là trung điểm của AH
=) AK=KH=\(\frac{AH}{2}\)=\(\frac{12}{2}\)=6
Ta có MN=\(\frac{BC}{2}\)=10
Diện tích hình thang BMNC là
\(\frac{1}{2}\).KH.(MN+BC)= \(\frac{1}{2}\).6.(10+20)
= 90 cm2