Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb tg }ABC\Rightarrow MN\text{//}AC;MN=\dfrac{1}{2}AC\\ \left\{{}\begin{matrix}CP=PD\\DQ=QA\end{matrix}\right.\Rightarrow PQ\text{ là đtb tg }ACD\Rightarrow PQ\text{//}AC;PQ=\dfrac{1}{2}AC\\ \Rightarrow MN\text{//}PQ;MN=PQ\\ \Rightarrow MNPQ\text{ là hbh}\\ \left\{{}\begin{matrix}AM=MB\\CP=PD\end{matrix}\right.\Rightarrow MP\text{ là đtb tg }ABD\Rightarrow MP\text{//}BD\\ \text{Mà }AC\perp BD;MN\text{//}AC\\ \Rightarrow MP\perp MN\\ \text{Vậy }MNPQ\text{ là hcn}\)
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
a, Xét tg ACD có :
AM=MB (gt) và DQ=OQ (gt)
=> MQ là đtb
=> MQ//AD và MQ=1/2AD
Xét tg ACD có :
AN=NC (gt) và DP=PC (gt)
=> NP là đtb
=> NP//AD và NP=1/2AD
Từ trên suy ra : MNPQ là hình thoi
b, dễ , không biết nói mình
nhớ k nha bạn
bạn ơi , nếu như bạn thì chỉ có 2 cặp cạnh đối song song và bằng nhau mà ra hình thoi thì siêu thật
lười gõ =_=
link ây : https://olm.vn/hoi-dap/question/423397.html
tự làm nha
a) Tam giác ABC có :
MA = MB (gt)
NB = NC (gt)
nên MN là đường trung bình của tam giác, do đó MN // AC và MN = AC
Chứng minh tương tự : PQ // AC và PQ = AC
Suy ra MN // PQ và MN = PQ.
Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (1)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (2)
Từ (1) và (2) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
Q là trung điểm của AD(gt)
P là trung điểm của CD(gt)
Do đó: QP là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ(cmt)
MN=PQ(cmt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABD có
M là trung điểm của AB(gt)
Q là trung điểm của AD(gt)
Do đó: MQ là đường trung bình của ΔADB(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Hình bình hành MNPQ trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MQP}=90^0\\MQ=QP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB\perp CD\\AB=CD\end{matrix}\right.\)
Hình bình hành MNPQ trở thành hình vuông khi
vì dễ quá nên không ai trả lời :D, bạn tự vẽ hình nhé
xét tam giác ADB có Q trung điểm AD, M trung điểm AB => MQ là đường trung bình tam giác ADB => MQ // BD và MQ = 1/2 BD.(1)
xét tam giác BCD có N trung điểm BC , P trung điểm CD => MP là đường trung bình tam giác BCD => NP//BD, NP= 1/2 BD(2)
(1)(2) => MQ // NP(vì cùng //BD) và MQ = NP (vì cùng = 1/2BD) => MQPN là hình bình hành