Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì ? vì sao?
MN//BD; PQ//BD
NP//AC; QM//AC
=>MN//PQNP//QNMNPQ la hbbh
a) Xét tam giác ABC có
M là trung điểm của AB
N là trung điểm của BC
=>MN là đường tb của yam giác ABC
=>MN//AC và MN=1/2 BC (1)
cm tg tự => QP//AC và QP =1/2 AC (2)
Từ (1) và (2) => MNPQ là hbh
cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB.BC,CD,DA
tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình vuông
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Vì M,N là trung điểm AB,BC nên MN là đtb tg ABC
Do đó MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)
Vì P,Q là trung điểm CD,DA nên PQ là đtb tg ACD
Do đó PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)
Từ (1)(2) ta được MN//PQ và \(MN=PQ\left(=\dfrac{1}{2}AC\right)\)
Do đó MNPQ là hình bình hành
Để MNPQ là hcn thì \(\widehat{MNP}=90^0\)
\(\Leftrightarrow MN\perp NP\left(3\right)\)
Ta thấy NP là đtb tg BCD nên NP//BD
Do đó NP//BD (4)
Kết hợp (3) và (1) và (4) ta được MNPQ là hcn
\(\Leftrightarrow AC\perp BD\)