Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên A1ˆ=C1ˆA1^=C1^ (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vẽ hình :
Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng
Hình vẽ:
Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)
Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)
\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)
\(\Rightarrow MN//AB\)
Mà \(AB\perp AD\Rightarrow MN\perp AD\)
Nối BD. Gọi O là trung điểm DB
Xét tam giác ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình ABD
\(\Rightarrow\)OM // AD, OM = \(\frac{1}{2}\) AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tự ta chứng minh được ON là đường trung bình tam giác DBC
\(\Rightarrow\) ON // BC; BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = Bc (gt)
\(\Rightarrow\)OM=ON ( \(\frac{1}{2}\)AD)
Xét OMN
có OM = ON
\(\Rightarrow\) Tam giác OMN cân tại O ( đn)
\(\Rightarrow\) góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \Rightarrow góc AEM = MFB ( đpc/m)
Ta có: AB=BC (gt)
Suy ra: Tam giác ABC cân.
Nên (1)
Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)
Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)
~~~~ học tốt~~~~
Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)
Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)
Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)
(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)
(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)
=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)
=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)
=> \(\widehat{EPF}=\widehat{P}=90^o\)