K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Tứ giác ABCD có ABC^ + ADC^ = 180 độ nên Tứ giác ABCD nội tiếp được một đường tròn tâm O 
Do vậy đường trung trực của AC, BD, AB cùng đi qua tâm O (Dựa vào ĐL đường kính và dây)

15 tháng 8 2017

kho the 

Xét tứ giác ABCD có \(\widehat{ABC}+\widehat{ADC}=180^0\)

nên ABCD là tứ giác nội tiếp

=>Tâm của đường tròn ngoại tiếp tứ giác ABCD là giao của hai đường trung trực của các đoạn AB và AD

=>OA=OB=OC=OD

14 tháng 10 2021

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.