Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\widehat{BCD}+120^o=180^o\)( kề bù )
\(\widehat{BCD}=180^o-120^o\)
\(\widehat{BCD}=60^o\)
Tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(130^o+90^o+60^o+\widehat{D}=360^o\)
\(280^o+\widehat{D}=360^o\)
\(\widehat{D}=360^o-280^o\)
\(\widehat{D}=80^o\)
Trong tứ giác ABCD, ta có: A+B+C+D=360° => A+120°+90°+60°=360° => A=360°-120°-90°-60°=90°
Vẽ hình, gọi A1 là góc trong còn A2 là góc ngoài tại A
Ta có: \(\widehat{A_1}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (Tổng 4 góc của tứ giác)
\(\Rightarrow\widehat{A}_1+120^0+60^0+90^0=360^0\)
\(\Rightarrow\widehat{A_1}=360^0-120^0-60^0-90^0=90^0\)
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (kề bù)
\(\Rightarrow90^0+\widehat{A_2}=180^0\Rightarrow\widehat{A_2}=90^0\)
Vậy ....
trong tứ giác ABCD có: góc A+ góc B+ góc C+ góc D=360 độ
thay số: góc A+ 120 độ + 60 độ+ 90 độ= 360 độ
suy ra: góc A= 360 độ -120 độ -60 độ- 90 độ=90 độ
góc ngoài tại A= 180 độ - góc A
thay số: góc ngoài tại A=180 độ-90 độ=90 độ
Vậy góc A=90 độ, góc ngoài của A=90 độ
Ta có : \(^{\widehat{C_1}+\widehat{C_2}=180^o}\)(hai góc kề bù)
Mà \(\widehat{C_2}=120^o\)(gt)
Suy ra : \(\widehat{C_1}=180^o-120^o=60^o\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C_1}+\widehat{D}=360^o\) (tổng bốn góc trong 1 tứ giác)
Mà \(\widehat{A}=130^o;\widehat{B}=90^o;\widehat{C}=60^o\)
Nên : \(\widehat{D}=360^o-130^o-90^o-60^o=80^o\)
Ta có: ˆA+ˆB+ˆC+ˆD=360oA^+B^+C^+D^=360o
⇒ˆA+120độ+60độ+90độ=360độ⇒A^+120độ+60độ+90độ=360độ
⇒ˆA=360độ−90độ−60độ−120độ=90 độ
Cho tứ giấc abcd có c=80 độ a-b =10 độ tính a
Tính ac