K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

Bài làm

a) Vì tam giác ABD ~ tam giác CDB ( gt )

=> \(\widehat{ABD}=\widehat{BDC}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AB // CD 

b) Vì tam giác ABD ~ tam giác CDB ( gt )

=> \(\frac{AB}{CD}=\frac{AD}{BC}=\frac{BD}{BD}\)

hay \(\frac{2}{8}=\frac{3}{BC}=\frac{BD}{BD}\)

=> BC = 8 . 3 : 2 = 12 ( cm )

23 tháng 5 2020

thank bn

20 tháng 3 2020

A B C D 8 25 20 4 10

a, Cách vẽ :

Vẽ tam giác BDC 

+) DC = 25cm

+) Vẽ cung tâm tròn D có bán kính 10cm và cung tròn tâm C có bán kính 20cm . Giao điểm của 2 cung tròn là B

- - Vẽ điểm A: Vẽ cung tròn tâm B có bán kính 4cm và cung tròn tâm D có bán kính 8cm. Giao điểm của hai cung tròn này là điểm A. Nối các cạnh BD, BC, DA, BA. 
=> Vậy là ta đã vẽ được tứ giác ABCD thỏa mãn điều kiện đề bài.

b, Ta có : \(\frac{AB}{BD}=\frac{4}{10}=\frac{2}{5};\frac{BD}{DC}=\frac{10}{25};\frac{AD}{BC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{AD}{BC}\)

=> tam giác ABD ∽ tam giác BDC ( c - c - c )

c, Tam giác ABD ∽ tam giác BDC ( theo chứng minh câu b )

\(\Rightarrow\widehat{ABD}=\widehat{BDC}\), mà 2 góc ở vị trí sole trong

\(\Rightarrow AB//DC\)hay ABCD là hình thang

20 tháng 3 2020

Chả hiểu j cả giải thích đi :3333

29 tháng 11 2019

Giải bài 61 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) Cách vẽ:

- Vẽ ΔBDC:

   + Vẽ DC = 25cm

   + Vẽ cung tròn tâm D có bán kính = 10cm và cung tròn tâm C có bán kính = 20cm. Giao điểm của hai cung tròn là điểm B.

Nối DB và BC.

- Vẽ điểm A: Vẽ cung tròn tâm B có bán kính = 4cm và cung tròn tâm D có bán kính = 8cm. Giao điểm của hai cung tròn này là điểm A.

Nối DA và BA.

Vậy là ta đã vẽ được tứ giác ABCD thỏa mãn điều kiện đề bài.

Giải bài 61 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

25 tháng 5 2018

Vì ΔABD ⁓ ΔBDC nên A B B D = B D D C = A D B C , tức là  2 B D = B D 8 = 3 B C

Ta có B D 2 = 2.8 = 16 nên BD = 4 cm

Suy ra BC = 8.3 4  = 6 cm

Vậy BD = 4cm, BC = 6cm

Đáp án: D

18 tháng 4 2020

A B C D 8 10 20 25

a, - Vẽ điểm A: Vẽ cung tròn tâm B có bán kính = 4cm và cung tròn tâm D có bán kính = 8cm. Giao điểm của hai cung tròn này là điểm A.

Nối DA và BA.

Vậy là ta đã vẽ được tứ giác ABCD thỏa mãn điều kiện đề bài.
b, Ta có :

\(\frac{AB}{CD}=\frac{4}{10}=\frac{2}{5};\frac{BD}{CD}=\frac{10}{25}=\frac{2}{5};\frac{AD}{BC}=\frac{8}{20}=\frac{2}{5}\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{AD}{BC}\Rightarrow\Delta ABD~\Delta BDC\left(c-c-c\right)\)

c, \(\Delta ABD~\Delta BDC\)

\(\Rightarrow\widehat{ABD}=\widehat{BDC}\)

Vì 2 góc này so le trong nên

=> AB // DC hay ABCD là hình thang

Sửa đề: Đường cao BH

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔBDC\(\sim\)ΔHBC

b: Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:

\(DC^2=BD^2+BC^2\)

\(\Leftrightarrow BD^2=25^2-15^2=400\)

hay BD=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:

\(\left\{{}\begin{matrix}BD^2=HD\cdot DC\\BC^2=HC\cdot DC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HD=16\left(cm\right)\\HC=9\left(cm\right)\end{matrix}\right.\)

22 tháng 4 2017

a)Vẽ tam giác BDC có BD = 10c,, DC =25cm và BC = 20cm
– Vẽ DC = 25 cm
– Vẽ đường tròn tâm D, bán kính R = 10cm và đường tròn tâm C, bán kính R = 20cm và giao điểm của 2 đường tròn trên là điểm B
* Vẽ điểm A: vẽ đường tròn tâm B, bán kính bằng 4 cm và đường tròn tâm D, bán kính bằng 8 cm. Giao điểm của hai đường tròn là A.
Tứ giác ABCD thỏa mãn các điều kiện bài toán.
b) Ta có AB/BD = 4/10 =2/5; BD/DC =10/25=2/5 và AD/BC = 8/20 =2/5
⇒ AB/BD = BD/DC = AD/BC = 2/5 ⇒ ΔABD ∽ ΔBDC
c) Ta có ΔABD ∽ ΔBDC ⇒ góc \(\widehat{ABD}=\widehat{BDC}\) ⇒ AB//DC

22 tháng 4 2017

Giải bài 61 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) Cách vẽ:

- Vẽ ΔBDC:

+ Vẽ DC = 25cm

+ Vẽ đường tròn tâm D có bán kính = 10cm và đường tròn tâm C có bán kính = 20cm. Giao điểm của hai đường tròn là điểm B.

- Vẽ điểm A: Vẽ đường tròn tâm B có bán kính = 4cm và đường tròn tâm D có bán kính = 8cm. Giao điểm của hai đường tròn này là điểm A.

Vậy là ta đã vẽ được tứ giác ABCD thỏa mãn điều kiện đề bài.

Giải bài 61 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8