K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: MK⊥AD(gt)

CD⊥AD(gt)

Do đó: MK//CD(Định lí 1 từ vuông góc tới song song)

Xét ΔAKM và ΔADC có 

\(\widehat{MAK}\) chung

\(\widehat{AMK}=\widehat{ACD}\)(hai góc so le trong, MK//CD)

Do đó: ΔAKM∼ΔADC(g-g)

bài 7. cho tam giác abc vuông tại a . gọi m là trung điểm của bc . từ m kẻ mh vuông góc ab (h thuộc ab) mk vuông góc ac (k thuộc ac)a) chứng minh tứ giác bhkm là hình bình hành.b) chứng minh tứ giác hmck là hình bình hành.c) chứng minh h là trung điểm của ab .d) chứng minh bc=2hkBài 8. Cho hình bình hành ABCD, có 2 đường chéo AC, BD cắt nhau tại O. Đường thẳng bất kì qua O cắt AB, CD lần lượt ở M và N.a)...
Đọc tiếp

bài 7. cho tam giác abc vuông tại a . gọi m là trung điểm của bc . từ m kẻ mh vuông góc ab (h thuộc ab) mk vuông góc ac (k thuộc ac)
a) chứng minh tứ giác bhkm là hình bình hành.
b) chứng minh tứ giác hmck là hình bình hành.
c) chứng minh h là trung điểm của ab .
d) chứng minh bc=2hk
Bài 8. Cho hình bình hành ABCD, có 2 đường chéo AC, BD cắt nhau tại O. Đường thẳng bất kì qua O cắt AB, CD lần lượt ở M và N.
a) Chứng minh OM =ON
b) Tứ giác AMCN là hình gì? Vì sao?
c) Chứng minh BN // DM và BN = DM 
Bài 9. Cho hình bình hành ABCD . Trên đường chéo BD lấy hai điểm M và N sao cho: BN=DN=1/3BD
a) Chứng minh :tam giác AMB=tam giác CND 
b)Chứng minh rằng tứ giác AMCN là hình bình hành.
c) Gọi O là giao điểm của AC và BD , I là giao điểm của AM và BC . Chứng minh rằng: AM=2MI
d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O .

1
17 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó; AHMK là hình chữ nhật

 

12 tháng 10 2017

Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên 
=> EI = DI ( = ½ AM) 
=> Tam giác EID cân tại I 
Lại có các tam giác AEI và ADI cân tại I nên: 
^EIM = 2^EAI và ^MID = 2^IAD 
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ 
(Vì AD là đường cao nên là phan giác ^A) 
Tam giác EID cân lại có ^EID = 60 độ nên đều 
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi 
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID. 
=> HO//IK và HM//IK 
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O 

11 tháng 11 2017

Ban kia lam dung roi do

k tui nha

thanks

dạ cô vẽ dùng em hình

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải