Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mong mọi người giúp em với ạ!!!!!!!!!!!!!
cảm ơn mọi người rất nhiều
a: BA=BC
DC=DA
=>BD là trung trực của AC
b: Xét ΔABD và ΔCBD có
BA=BC
BD chung
DA=DC
=>ΔABD=ΔCBD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ
A B C D ( ) O
Bài làm
a) Xét tam giác DAB và tam giác CBA có:
AD = BC ( giả thiết )
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
=> Tam giác DAB = tam giác CBA ( c.g.c )
=> BD = AC ( hai cạnh tương ứng )
b) Vì tam giác DAB = tam giác CBA ( cmt )
=> \(\widehat{ABD}=\widehat{BAC}\)( hai góc tương ứng )
Ta có: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{BAC}+\widehat{CAD}=\widehat{BAD}\)
Mà \(\widehat{ABD}=\widehat{BAC}\)( cmt )
\(\widehat{ABC}=\widehat{BAD}\)( giả thiết )
=> \(\widehat{DBC}=\widehat{CAD}\)
Xét tam giác CAD và tam giác DBC có:
BC = AD ( giả thiết )
\(\widehat{DBC}=\widehat{CAD}\)( cmt )
BD = AC ( cmt )
=> Tam giác CAD = tam giác DBC ( c.g.c )
=> \(\widehat{ADC}=\widehat{BCD}\)( hai góc tương ứng )
c) Gọi O là giao điểm của BD và AC
Xét tam giác OAB có:
\(\widehat{ABD}=\widehat{BAC}\)( cmt )
=> Tam giá OAB cân tại O
=>\(\widehat{ABD}+\widehat{BAC}=180^0-\widehat{AOB}\)
=> \(2\widehat{ABD}=180^0-\widehat{AOB}\) (1)
Xét tam giác OCD có:
\(\widehat{BDC}=\widehat{ACD}\)( Do tam giác CAD = tam giác DBC )
=> Tam giác OCD cân tại O
=> \(\widehat{BDC}+\widehat{ACD}=180^0-\widehat{DOC}\)
=> \(2\widehat{BDC}=180^0-\widehat{DOC}\) (2)
Ta có: \(\widehat{AOB}=\widehat{DOC}\) ( hai góc đối ) (3)
Từ (1), (2) và (3) => \(2\widehat{ABD}=2\widehat{BDC}\) => \(\widehat{ABD}=\widehat{BDC}\)
Mà hai góc này ở vị trí so le trong
=> AB // CD ( đpcm )
a) Xét tam giác DAB và tam giác CAB có :
AD = BC
\(\widehat{DAB}=\widehat{CBA}\)
Chung AB
\(\Rightarrow\)tam giác DAB = tam giác CAB ( c-g-c )
\(\Rightarrow AC=DB\)( 2 cạnh tương ứng )
b ) Xét tam giác ADC và tam giác BCD có :
AD = BC
AC = BD
chung CD
\(\Rightarrow\)tam giác ADC = tam giác BCD ( c-c-c )
\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )