K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Đáp án A

Hiển nhiên thiết diện của hình tứ diện ABCD khi cắt bởi mặt phẳng (MNP) là một tam giác.

10 tháng 5 2018

Đáp án D

Trong tam giác BCD có: P là trọng tâm, N là trung điểm BC . Suy ra N , P , D thẳng hàng.

Vậy thiết diện là tam giác MND .

Xét tam giác MND , ta có 

Do đó tam giác MND cân tại D .

Gọi H là trung điểm MN suy ra DH  ⊥ MN

Diện tích tam giác 

5 tháng 7 2019

Trong tam giác BCD có: Plà trọng tâm, N là trung điểm BC .

Suy ra N; P; D  thẳng hàng.

Vậy thiết diện là tam giác MND..

Xét tam giác MND, ta có  M N = A B 2 = a ;  D M = D N = A D 3 2 = a 3

Do đó tam giác MND cân tại D.

Gọi H là trung điểm  MN  suy ra  DH và  MN vuông góc với nhau..

Diện tích tam giác  S Δ M N D = 1 2 M N . D H = 1 2 M N . D M 2 − M H 2 = a 2 11 4

Chọn C.

14 tháng 12 2021

14 tháng 12 2021

3 tháng 1 2020

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có mặt phẳng (AA', DD') song song với mặt phẳng (BB', CC'). Mặt phẳng (MNP) cắt hai mặt phẳng nói trên theo hai giao tuyến song song.

Nếu gọi Q là điểm trên cạnh BB' sao cho NQ // PM thì Q là giao điểm của đường thẳng BB' với mặt phẳng (MNP)

Nhận xét. Ta có thể tìm điểm Q bằng cách nối P với trung điểm I của đoạn MN và đường thẳng PI cắt BB' tại Q.

b) Vì mặt phẳng (AA', BB') song song với mặt phẳng (DD', CC') nên ta có MQ // PN. Do đó mặt phẳng (MNP) cắt hình hộp theo thiết diện MNPQ là một ình bình hành.

Giả sử P không phải là trung điểm của đoạn DD'. Gọi H = PN ∩ DC , K = MP ∩ AD. Ta có D = HK là giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

Chú ý rằng giao điểm E = AB ∩ MQ cũng nằm trên giao tuyến d nói trên. Khi P là trung điểm của DD' mặt phẳng (MNP) song song với mặt phẳng (ABCD).

7 tháng 10 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + (α) // AC

⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.

Mà M ∈ (ABC) ∩ (α).

⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).

+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).

+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).

+ (α) ∩ (ACD) = QP.

b)Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.