K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

14 tháng 12 2021

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.

NV
1 tháng 7 2021

a.

Trong mp (SAB), nối MN kéo dài cắt AB tại E

\(\Rightarrow\left\{{}\begin{matrix}E\in\left(MNP\right)\\E\in\left(ABCD\right)\end{matrix}\right.\)

Mặt khác theo giả thiết \(\left\{{}\begin{matrix}P\in\left(ABCD\right)\\P\in\left(MNP\right)\end{matrix}\right.\)

\(\Rightarrow EP=\left(MNP\right)\cap\left(ABCD\right)\)

b.

Theo giả thiết: \(\left\{{}\begin{matrix}M\in\left(MNP\right)\\M\in SA\Rightarrow M\in\left(SAD\right)\end{matrix}\right.\)

Trong mp (ABCD), nối EP kéo dài cắt AD tại F

\(\Rightarrow\left\{{}\begin{matrix}F\in\left(MNP\right)\\F\in\left(SAD\right)\end{matrix}\right.\)

\(\Rightarrow MF=\left(MNP\right)\cap\left(ABCD\right)\)

c.

Trong mp (SBC), nối NP kéo dài cắt SC tại H

\(\Rightarrow\left\{{}\begin{matrix}H\in\left(MNP\right)\\H\in\left(SCD\right)\end{matrix}\right.\)

Gọi giao điểm của EP và CD tại K

\(\Rightarrow HK=\left(MNP\right)\cap\left(SCD\right)\)

31 tháng 3 2017

a) Ta có E, N ∈ (MNP) ⋂ (BCD)

=> (PMN) ⋂ (BCD) = EN.

b) Gọi Q là giao điểm của NE và BC thì Q là giao điểm của (PMN) và BC.

4 tháng 1 2019

Đáp án A

Xét (BCD) có: RQ ∩ BD = K

K ∈ (ABD)

Xét (ABD) có: PK ∩ AD = S

Gọi E là trung điểm BR

⇒ R là trung điểm đoạn EC

Mà Q là trung điểm CD

⇒ RQ là đường trung bình tam giác DEC

RQ // DE ⇒ RK // DE

Xét tam giác BRK có: RK // DE và E là trung điểm BR

D là trung điểm BK

Xét tam giác ABK có: AD là đường trung tuyến cạnh BK

      và KP là đường trung tuyến cạnh AB

      PK ∩ AD = S

S là trọng tâm tam giác ABK

⇒ S A S D = 2

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)

Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD). 

b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP) 

Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).

c) Ta có: P thuộc (MNP) và (ACD)

Q thuộc (MNP) và (ACD)

Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP). 

d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)

Suy ra: PG // CN 

Do đó: △PIG đồng dạng với △NIC

Do đó: C, I, G thẳng hàng. 

20 tháng 8 2017

Đáp án C

Trong (ABC) có EF ∩ AC =  I

⇒ I ∈ (ACD)

Xét (ACD) có: IG ∩ AD =  H

⇒ EFGH là thiết diện cần tìm