K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Rightarrow c=\frac{ab}{a+b}\)

\(a^2+b^2+c^2=\left(a+b\right)^2-2ab+\frac{a^2b^2}{\left(a+b\right)^2}=\frac{\left(a+b\right)^4-2ab\left(a+b\right)^2+a^2b^2}{\left(a+b\right)^2}\)

\(=\frac{\left[\left(a+b\right)^2-ab\right]^2}{\left(a+b\right)^2}\)

\(\Rightarrow\sqrt{a^2+b^2+c^2}=\left|\frac{\left(a+b\right)^2-ab}{a+b}\right|\) là số hữu tỉ.

17 tháng 7 2015

Chứng minh bằng biến đổi tương đương điều sau:

\(\left(\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\right)^2=\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)

là có thể chứng minh được bài toán.

11 tháng 5 2017

\(\sqrt{m^2+m+23}\)nguyên dương<=>m2+m+23=k2 (k\(\in\)N*)

4m2+4m+92=4k2<=>(2m+1)2+91=4k2<=>92=(2k-2m-1)(2k+2m+1)

Dễ thấy  2k-2m-1<2k+2m+1 vì m nguyên dương

Thử từng cặp ước nguyên dương của 92 để giải phương trình

29 tháng 12 2016

Không phải hôm nay nói nhiều quá hết tin nhắn rồi

a) có thể không, có thể có

b) có thể có, có thể không

6 tháng 6 2018

Áp dungj BĐT min-côp-xki, ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}=\sqrt{4+\left(a^2+b^2\right)^2}\)

Mà \(\left(a+2\right)\left(b+2\right)=\frac{25}{4}\Rightarrow ab+2a+2b=\frac{9}{4}\)

Mà \(a^2+b^2\ge2ab;4a^2+1\ge4a;4b^2+1\ge4b\Rightarrow5\left(a^2+b^2\right)+2\ge\frac{9}{2}\)

=> \(a^2+b^2\ge\frac{1}{2}\)

=> \(F\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)

Dấu = xảy ra <=> a=b=1/2

^_^