Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đường thẳng vẽ được qua các cặp điểm lúc ban đầu là n . n − 1 2 .
Nếu bớt đi một điểm thì số đường thẳng vẽ được qua các cặp điểm về sau là n − 1 . n − 2 2 .
Theo bài ra ta có: n . n − 1 2 − n − 1 . n − 2 2 = 10
⇔ n − 1 . n − n − 2 = 20 ⇔ n − 1 . 2 = 20 ⇔ n − 1 = 10 ⇔ n = 11
Vậy số điểm lúc đầu là 11.
Gọi số điểm ban đầu là n.
Ta có công thức tính số đường thẳng qua n-3 điểm cho sẵn là: (n-3).(n-3-1):2
=(n-3).(n-4):2=36
=>(n-3).(n-4)=72=8.9
=>(n-3).(n-4)=(11-3).(11-4)
=>n=11
=>Ban đầu có 11 điểm.
=>Có số đoạn thẳng là: 11.(11-1):2=11.10:2=1100:2=550
Vậy nếu không bớt 3 điểm thì có 550 đoạn thẳng.
Gọi số điểm ban đầu là n.
Ta có công thức tính số đường thẳng qua n-3 điểm cho sẵn là: (n-3).(n-3-1):2
=(n-3).(n-4):2=36
=>(n-3).(n-4)=72=8.9
=>(n-3).(n-4)=(11-3).(11-4)
=>n=11
=>Ban đầu có 11 điểm.
=>Có số đoạn thẳng là: 11.(11-1):2=11.10:2=1100:2=550
Vậy nếu không bớt 3 điểm thì có 550 đoạn thẳng.