K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

undefined

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.

2 tháng 12 2021

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.

13 tháng 6 2020

Đề bài thiếu : không có 4 điểm nào cùng thuộc 1 đường tròn ( nhỡ n điểm này cùng thuộc 1 đường tròn)

Có n điểm mà ko có 3 điểm nào thẳng hàng luôn tồn tại 2 điểm sao cho n−2 điểm còn lại ∈ cùng một nửa mặt phẳng có bờ là đường thẳng chứa đoạn thẳng có 2 mút là 2 điểm trên

gọi 2 điểm đó là A1,A2 và n−2 điểm còn lại là B1,B2,B3,...,Bn−2

Xét các góc A1BiA2ˆ(i=1,2,3,..,n−2)

luôn tồn tại một góc có số đo lớn hơn hẳn những góc còn lại giả sử là A1BmA2ˆ

khi đó vẽ đường tròn ngoại tiếp TG này

Dễ cm nếu ∃1 điểm nằm trong đường tròn đó gs là Bn thì A1BnA2ˆ>A1BmA2ˆ

=> vô lý vì góc trên là lớn nhất

P/s : Bài náy có thể mở rộng là có thể vẽ 1 đường tròn chứa đúng m điểm với (m≤n)

14 tháng 6 2020

Trong các khoảng cách từ O đến các cạnh của đa giác, giả sử khoảng cách từ O đến cạnh AB là nhỏ nhất (đó là đường vuông góc OE)

Ta sẽ chứng minh E phải thuộc cạnh AB

Giả sử E nằm ngoài cạnh AB, khi đó OE phải cắt một trong các cạnh của đa giác tại G

Dễ thấy OF<OG<OE nghĩa là điểm O gần cạnh BC hơn cạnh AB

Điều này trái với việc chọn cạnh AB, từ đó ta có điều phải chứng minh

A B E G O F C D

27 tháng 5 2018

Xét d là đường thẳng đi qua ít nhất 3 điểm trong 100 điểm. Giả sử có nhiều hơn 1 điểm nằm ngoài d. Xét 2 điểm A, B nằm ngoài d và 2 điểm C, D thuộc d và C, D không thuộc AB. Khi đó 4 điểm A, B, C, D không thỏa mãn đầu bài. Vậy có nhiều nhất 1 điểm nằm ngoài d. Bỏ điểm đó đi ta có 99 điểm thẳng hàng 

k mk nhé

27 tháng 5 2018

mấy bài này mình thấy khó hiểu quá à

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR tồn...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

1
20 tháng 4 2018

 Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o

0
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13...
Đọc tiếp

1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,

2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm

3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương

4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá√33 cm2 và có một góc nhỏ hơn 45o

0