Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo câu a, ta có\(\overrightarrow{AK}\) =\(\dfrac{3}{7}\overrightarrow{AB}+\dfrac{4}{7}\overrightarrow{AC}\)
\(=\dfrac{3}{7}.\dfrac{5}{3}\overrightarrow{AI}+\dfrac{4}{7}.\dfrac{1}{2}\overrightarrow{AJ}\)
=> K,I, J thẳng hàng
a) \(\overrightarrow{BI}=\overrightarrow{BC}+\overrightarrow{CI}=\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}=\overrightarrow{BA}+\overrightarrow{AC}+\dfrac{1}{4}\overrightarrow{CA}\)
\(=\overrightarrow{BA}+\overrightarrow{AC}-\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AC}+\overrightarrow{BA}=\dfrac{3}{4}\overrightarrow{AC}-\overrightarrow{AB}\).
b) Có \(\overrightarrow{BJ}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{2}{3}\overrightarrow{AB}=\dfrac{3}{2}\left(\dfrac{1}{2}\overrightarrow{AC}-\overrightarrow{AB}\right)=\dfrac{3}{2}\overrightarrow{BI}\).
Vì vậy 3 điểm B, I, J thẳng hàng.
c)
Trên cạnh AC lấy điểm K sao cho \(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AC}\).
Tại điểm K dựng điểm T sao cho \(\overrightarrow{KT}=-\dfrac{3}{2}\overrightarrow{AB}=\dfrac{3}{2}\overrightarrow{BA}\).
\(\overrightarrow{BJ}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}=\overrightarrow{AK}+\overrightarrow{KT}=\overrightarrow{AT}\).
Dựng điểm T sao cho \(\overrightarrow{BJ}=\overrightarrow{AT}\).
A B C K T J
a) Tọa độ của vectơ \(\overrightarrow a \) là \(\left( {2;7} \right)\)
b) Tọa độ của vectơ \(\overrightarrow b \) là \(\left( { - 1;3} \right)\)
c) Tọa độ của vectơ \(\overrightarrow c \) là \(\left( {4;0} \right)\)
d) Tọa độ của vectơ \(\overrightarrow d \) là \(\left( {0; - 9} \right)\)
a) \(\overrightarrow{a}\left(2;3\right)\);
b) \(\overrightarrow{b}\left(\dfrac{1}{3};-5\right)\);
c) \(\overrightarrow{c}\left(3;0\right)\);
d) \(\overrightarrow{d}\left(0;-2\right)\).
???????????????????????????????????????????????????????????????
b) Ta có :
\(IB=2IC\Leftrightarrow IB=2\left(IB+BC\right)\Leftrightarrow-IB=2BC\Leftrightarrow BI=2BC\)
\(JC=-\frac{1}{2}JA\Leftrightarrow JB+BC=-\frac{1}{2}\left(JB+BA\right)\)
\(\Leftrightarrow\frac{3}{2}JB=-\frac{1}{2}BA-BC\Leftrightarrow JB=-\frac{1}{3}BA-\frac{2}{3}BC\)
\(\Rightarrow BJ=\frac{1}{3}BA+\frac{2}{3}BC\)
\(\Rightarrow IJ=BJ-BI=\frac{1}{3}BA+\frac{2}{3}BC-2BC=\frac{1}{3}BA-\frac{4}{3}BC\)
\(KA=-KB\Leftrightarrow KB+BA=-KB\Leftrightarrow2KB=-BA\)
\(\Rightarrow2BK=BA\Leftrightarrow BK=\frac{1}{2}BA\)
\(\Rightarrow JK=BK-BJ=\frac{1}{2}BA-\frac{2}{3}BC=\frac{1}{6}BA-\frac{2}{3}BC\)
\(=\frac{1}{2}\left(\frac{1}{3}BA-\frac{4}{3}BC\right)=\frac{1}{2}IJ\)
Vậy \(I,J,K\)thẳng hàng