Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm b nha do a không biết làm
A=5+32+33+...+32018
3A=15+33+34+...+32019
3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)
2A=32019+15-(5+32)
2A=32019+15-14
2A=32019+1
2A-1=32019+1-1
2A-1=32019
vậy n = 2019
Có : S = (1+2)+(2^2+2^3)+.....+(2^98+2^99)
= 3+2^2.(1+2)+......+2^98.(1+2)
= 3+2^2.3+.....+2^98.3
= 3.(1+2^2+......+2^98) chia hết cho 3
=> S chia hết cho 3
Có : 2S = 2+2^2+....+2^100
S = 2S - S = (2+2^2+....+2^100)-(1+2+2^2+....+2^99) = 2^100 - 1
=> S+1 = 2^100-1+1 = 2^100 = (2^2)^50 = 4^50 = 4^48+2
=> ĐPCM
Tk mk nha
b: \(2n+8⋮n-1\)
=>\(2n-2+10⋮n-1\)
=>\(10⋮n-1\)
=>\(n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{2;0;3;6;11\right\}\)
a: \(S=1+2^2+2^4+...+2^{100}\)
=>\(4\cdot S=2^2+2^4+2^6+...+2^{102}\)
=>\(4\cdot S-S=2^2+2^4+2^6+...+2^{102}-1-2^2-2^4-...-2^{100}\)
=>\(3\cdot S=2^{102}-1\)
=>\(S=\dfrac{2^{102}-1}{3}\)
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
S = 1 + 2 + 22 + 23 + ... + 299
2S = 2 + 22 + 23 + 24 + ... + 2100
2S - S = (2 + 22 + 23 + 24 + ... + 2100) - (1 + 2 + 22 + 23 + ... + 299)
S = 2100 - 1
=> S + 1 = 2100 - 1 + 1 = (22)50 - 1 + 1 = 450
=> 4n + 2 = 450
=> n + 2 = 50
=> n = 50 - 2
=> n = 48
Ta có :
S = 1 + 2 + 22 + 23 + ... + 299 ( 1 )
2S = 2 + 22 + 23 + 24 + ... + 2100 ( 2 )
Lấy ( 2 ) - ( 1 ), ta có :
2S - S = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )
S = 2100 - 1
S + 1 = 2100 = ( 22)50 = 450
4n + 2 = 450
n + 2 = 50
n = 50 - 2
n = 48