K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Làm ơn

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)

i) Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

ii) Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).

b)

i)

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).

Xét tam giác \(OA'C'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)

Do đó, \(A'C'//AC\) (định lí Thales đảo)

Vì \(A'C'//AC \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{{AC}}{{A'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'C'}}{{AC}} = \frac{3}{1} = 3\).

- Vì \(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).

Xét tam giác \(OB'C'\) có:

\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)

Do đó, \(B'C'//BC\) (định lí Thales đảo)

Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{3}{1} = 3\).

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)

ii) Xét tam giác \(A'B'C'\) và tam giác \(ABC\) ta có:

\(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (chứng minh trên)

Do đó, tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\).

a: góc OBB'=góc BOC=60 độ

=>góc OBB'=góc B'OB=60 độ

=>ΔOBB' đều

b: BB'//OC

=>OB/OC=BB'/OC=AB/AC

OB/OA=OB'/OA=BB'/OA=CB/CA

=>OB/OC+OB/OA=AB/AC+BC/AC=1

=>1/OB=1/OA+1/OC