K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét \(VT=\dfrac{a^2}{b^2}=\dfrac{\left(bk\right)^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\left(1\right)\)

Xét \(VP=\dfrac{a^2-ac}{b^2-bd}=\dfrac{\left(bk\right)^2-bk\cdot dk}{b^2-bd}=\dfrac{b^2k^2-bdk^2}{b^2-bd}\)

\(=\dfrac{k^2\left(b^2-bd\right)}{b^2-bd}=k^2\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

28 tháng 8 2023

Áp dụng công thức tỉ lệ phân số ta có : 

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)

26 tháng 9 2017

Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

12 tháng 9 2017

Trong sách có nhé , bạn ạ

8 tháng 8 2017

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\rightarrowđpcm\)

8 tháng 8 2017

cảm ơn bạn

17 tháng 3 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)

=> a=bk ,c=dk

a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)

b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)

NV
12 tháng 12 2021

Đẳng thức đầu tiên sai:

Ví dụ: \(a=1;b=2;c=3;d=6\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)

Nhưng \(\dfrac{a.d}{c.d}\ne\dfrac{a^2-b^2}{b^2-d^2}\)

Với đẳng thức thứ 2:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

24 tháng 5 2017

ta có:

\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\)\(\Rightarrow\)\(\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Rightarrow\)\(\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}(ĐPCM)\)

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\) \(\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\) \(\dfrac{a}{a+c}=\dfrac{b}{b+d}=\dfrac{c}{d}\)

\(\Rightarrow\) \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\) \(\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)

= \(\dfrac{a^2+c^2}{b^{2+}d^2}\)

Tick mk với nhé! vui

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế