Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk
a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)
Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)
Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)
b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)
Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)
Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)
b) Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=kb\\\frac{c}{d}=k\Rightarrow c=kd\end{cases}}\)
VT : \(\frac{5a+3b}{5a-3b}\Rightarrow\frac{5kb+3b}{5ka-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (1)
VP : \(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (2)
Từ (1) và (2) => đpcm
\(a,\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=K\Rightarrow a=b.k\)
\(\Rightarrow c=d.k\)
\(-Tacó:\frac{5a+3b}{5a-3b}=\frac{5b.k+3b}{5b.k-3b}=\frac{b.\left(5k+3\right)}{b.\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(-Tacó:\frac{5c+3d}{5c-3d}=\frac{5d.k+3d}{5d.k-3d}=\frac{d.\left(5k+3\right)}{d.\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
\(Từ\left(1\right),\left(2\right)\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
a)\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(1)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(2)
từ (1)(2);\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đfcm)
b)\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2.k^2+3b^2k}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\)(1)
\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7.k^2.d^2+3d^2.k}{11d^2.k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\)(2)
từ(1)(2)\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)(đfcm)
Đặt \(\frac{a}{b}=\frac{c}{d}\)= k
\(\Rightarrow\)a=bk , c = dk
Ta có:
- \(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\) (1)
\(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)
Từ (1) và (2) suy ra \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
vậy \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
nhớ giải chi tiết giúp mình nhé ai nhanh và đúng nhất mình sẽ tích cho
à quên
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số = nhau
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
1.
a) Ta có: \(\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\) (1)
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}.\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right).\)
2.
Chúc bạn học tốt!
Bài này bạn chỉ cần đặt k rồi thế k vào là làm được à, dễ lắm
TỰ TÚC NHA!