Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 câu làm tương tự nhau, nhưng câu a chắc bạn ghi nhầm đề (hoặc đề sai). Do \(AB\perp CC'\) nhưng \(4.2+1.2\ne0\) là hoàn toàn vô lý
Mình làm câu b, 2 câu còn lại bạn làm tương tự
Gọi H là trực tâm tam giác \(\Rightarrow\) H là giao điểm BB' và CC'
Tọa độ H là nghiệm \(\left\{{}\begin{matrix}4x-3y+1=0\\7x+2y-22=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{64}{29};\frac{95}{29}\right)\)
B là giao điểm BC và BB' nên tọa độ B là nghiệm:
\(\left\{{}\begin{matrix}5x-3y+2=0\\4x-3y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
C là giao điểm BC và CC' nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}5x-3y+2=0\\7x+2y-22=0\end{matrix}\right.\) \(\Rightarrow C\left(2;4\right)\)
Đường AA' đi qua H và vuông góc BC nên nhận \(\left(3;5\right)\) là 1 vtpt
Phương trình AA':
\(3\left(x-\frac{64}{29}\right)+5\left(x-\frac{95}{29}\right)=0\Leftrightarrow3x+5y-23=0\)
Đường thẳng AB qua B và vuông góc CC' nên nhận \(\left(2;-7\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-7\left(y+1\right)=0\Leftrightarrow2x-7y-5=0\)
Đường thẳng AC qua C và vuông góc BB' nên nhận \(\left(3;4\right)\) là 1 vtpt
Phương trình AC:
\(3\left(x-2\right)+4\left(y-4\right)=0\Leftrightarrow3x+4y-22=0\)
Gọi M(x;y) trực tâm của tam giác ABC
Tọa độ điểm M là nghiệm của hệ:
\(\left\{{}\begin{matrix}4x-3y+1=0\\7x+2y-22=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{64}{29}\\y=\frac{95}{29}\end{matrix}\right.\)
\(M\left(\frac{64}{29};\frac{95}{29}\right)\)
CM là đường thẳng đi qua M và nhận AB là vtpt
=> CM: 3x + 5y - 23 =0
Tọa độ điểm A là nghiệm của hệ\(\left\{{}\begin{matrix}5x-3y+1=0\\4x-3y+1-0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\frac{1}{3}\end{matrix}\right.\)
=> A(0; 1/3)
=> AC: 2x - 7y + 7/3 = 0
tương tự bạn tìm tọa độ điểm B hoặc C => pt cạnh BC
Tọa độ điểm A là giao điểm của AB và AA'
\(\left\{{}\begin{matrix}4x+y-12=0\\2x+2y-9=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=2,5\\y=2\end{matrix}\right.\)
=>A(2,5;2)
Tọa độ điểm B là giao điểm của AB và BB'
\(\left\{{}\begin{matrix}4x+y-12=0\\5x-4y-15=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
=>B(3;0)
AA' vuông góc với BC
=>VTCP của BC là VTPT của AA': \(\overrightarrow{n}=\left(1;1\right)\)
=>VTPT của BC là: \(\overrightarrow{n'}=\left(1;-1\right)\)và B(3;0) thuộc BC
Phương trình đường thẳng BC: 1(x-3)-1(y-0)=0
hay (BC): x-y-3=0
BB' vuông góc với AC
=>VTCP của AC là: \(\overrightarrow{m}=\left(5;-4\right)\)
=>VTPT của AC là: \(\overrightarrow{m'}=\left(4;5\right)\) và A(2,5;2) thuộc AC
=>(AC): 4(x-2,5)+5(y-2)=0
hay (AC):4x+5y-20=0
Vậy...
Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :
x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13
Đường thẳng BC có VTPT n B C → ( 1 ; 3 ) .
Vì A H ⊥ B C nên đường thẳng AH nhận vecto n B C → ( 1 ; 3 ) làm VTCP, một VTPT của AH là: n A H → ( 3 ; − 1 )
Phương trình đường cao AH của tam giác là:
3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0
ĐÁP ÁN B