K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)

17 tháng 6 2018

ban biet ve hinh khong\

3 tháng 5 2015

Bài này là đề thi lớp 10 TPHCM năm rồi

12 tháng 4 2020

enytunyt

1 tháng 2 2022

1) Xét (O):

MA là tiếp tuyến (\(d_1\) là tiếp tuyến; \(M,A\in d_1\)).

\(\Rightarrow MA\perp AB.\Rightarrow\widehat{MAB}=90^o.\)

hay \(\widehat{MAI}=90^o.\)

Xét tứ giác AMEI:

\(\widehat{MAI}+\widehat{MEI}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác AMEI nội tiếp đường tròn.

2) Ta có: 

I là trung điểm của OA (gt).

\(\Rightarrow IA=\dfrac{1}{2}OA=\dfrac{1}{2}R.\)

Mà \(R=\dfrac{1}{2}AB\left(AB=2R\right).\)

\(\Rightarrow IA=\dfrac{1}{2}.\dfrac{1}{2}AB=\dfrac{1}{4}AB.\)

Mà \(IB=AB-\dfrac{1}{4}AB=\dfrac{3}{4}AB.\)

\(\Rightarrow IB=3IA.\)

Xét (O):

\(\widehat{EBN}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc tạo bởi tiếp tuyến và dây).

\(\widehat{EAB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc nội tiếp).

\(\Rightarrow\widehat{EBN}=\widehat{EAB}.\)

hay \(\widehat{EBN}=\widehat{EAI}.\)

Ta có: \(EI\perp EN\left(gt\right).\Rightarrow\widehat{IEN}=90^o.\)

\(\Rightarrow\widehat{IEB}+\widehat{BEN}=90^o.\) (1)

Xét (O):

AB là đường kính (gt).

\(E\in\left(O\right)\left(gt\right).\)

\(\Rightarrow\widehat{AEB}=90^o\) (Góc nội tiếp chắn nửa đường tròn).

\(\Rightarrow\widehat{AEI}+\widehat{IEB}=90^o.\) (2)

Tứ (1) và (2) \(\Rightarrow\widehat{AEI}=\widehat{BEN}.\)

Xét \(\Delta AEI\) và \(\Delta BEN:\)

\(\widehat{AEI}=\widehat{BEN}\left(cmt\right).\)

\(\widehat{EAI}=\widehat{EBN}\left(cmt\right).\)

\(\Rightarrow\Delta AEI\sim\Delta BEN\left(g-g\right).\)

\(\Rightarrow\dfrac{EI}{EN}=\dfrac{AI}{BN}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow EI.BN=AI.EN.\\ \Rightarrow3EI.BN=3AI.EN.\\ \Rightarrow3EI.BN=IB.EN.\)