K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

Chọn C

+ Gọi số cần tìm là 

Ta có tổng các chữ số của A là 1 + 2 + 3 + 4 + .... + 8 = 36 chia hết cho 9 nên A chia hết cho 9.

Do 9 và 111 có ƯCLN là  nên A chia hết cho 9999.

Đặ Ta có:

 chia hết cho 9999 => x + y chia hết cho 9999

Mà 

+ Từ tập X có 4 cặp số  nên có: 8 cách chọn a 1 ; 6 cách chọn a 2 ; 4 cách chọn a 3  và 2 cách chọn a 4 .

 Vì a i  và b i  tạo thành một cặp để  a i +  b i = 9 nên chọn  a i  có luôn  b i .

=> Số các số cần tìm là: 8.6.4.2 = 384 số

Vậy xác suất cần tìm là:

 

19 tháng 1 2017

Đáp án D

Do X có 8 phần tử và tổng các phần tử là 36 nên A chia hết cho 9, lại có (9;11) = 1 nên A chia hết cho 9999.

 

Ta có:

Có 8 cách chọn  a 1 . Với mỗi  a 1  sẽ cho 1 cách chọn cho duy nhất cho  a 5

 

Có 8 cách chọn  a 2 . Với mỗi  a 1  sẽ cho 1 cách chọn cho duy nhất cho  a 6

 

Có 8 cách chọn  a 3 . Với mỗi  a 1  sẽ cho 1 cách chọn cho duy nhất cho  a 7

 

Có 8 cách chọn  a 4 . Với mỗi  a 1  sẽ cho 1 cách chọn cho duy nhất cho  a 8

 

26 tháng 12 2020

Èo toàn bài khó nhằn :( Thôi làm được mỗi câu 2, câu 1 thì...dẹp đi

\(n\left(\Omega\right)=9.9.8.7.6.5\)

Số lẻ vậy thì f={1;3;5;7;9}

Nhưng nếu f=1 thì ko tồn tại a thỏa mãn a<f do a khác 0

f=3 cũng ko thỏa mãn do nếu a=1; b=2; nhưng ko tồn tại c thỏa mãn :v

f=5 tương tự, ko tồn tại e thỏa mãn

=> f={7;9}

Nếu f=7 thì (a,b,c,d,e)={1;2;3;4;5;6} và chỉ có duy nhất 1 cách sắp xếp \(\Rightarrow C^5_6\left(cach\right)\)

Nếu f=9 thì (a,b,c,d,e)={1;2;3;4;5;6;7;8} và chỉ có duy nhất một cách xếp \(\Rightarrow C^5_8\left(cach\right)\)

\(\Rightarrow n\left(A\right)=C^5_6+C^5_8\) \(\Rightarrow p\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=...\)

27 tháng 12 2020

Gọi A là số tự nhiên có 8 chữ số a1a2a3a4a5a6a7a8 chia hết cho 1111

9999a1a2a3a+ a1a2a3a4+a5a6a7a8 để A chia hết cho 1111 thì a1a2a3a4+a5a6a7a8 chia hết cho 1111

1000(a1 + a5) + 100(a2 + a6) + 10(a3 + a7) + (a4+ a8) (1)  chia hết cho 1111

đặt (a1 + a5) = x

     (a2 + a6) = y

     (a3 + a7) = z

      (a4+ a8) = t

 

3<=x<=15 

xét đk 

suy ra x = 9

suy ra x=y=z=t= 9

suy ra x+y+z+t=36 suy ra t= 36-x-y-z

thế vào (1) suy ra 

999(a1 + a5) + 99(a2 + a6) + 9(a3 + a7) =36 

hoán vị .......

suy ra có 3840 số 

17 tháng 4 2023

C?

18 tháng 12 2020

Cách chọn số đầu tiên : 7 cách

Cách chọn số thứ 2: 7 cách

=> Không gian mẫu: \(n\left(\Omega\right)=7.7=49\)

a/ Gọi số chẵn là \(\overline{ab}\)

Xét b=0 => Có 1 cách chọn b và 7 cách chọn a

Xét b= 2;4;6=> có 3 cách chọn b và 6 cách chọn a

=> Có 1.7+3.6=25 (số chẵn)

=> \(n\left(A\right)=25\Rightarrow p\left(A\right)=\dfrac{25}{49}\)

b/ Gọi số chia hết cho 5 có dạng \(\overline{cd}\)

Xét d=0 => Có 1 cách chọn d và 7 cách chọn c

Xét d=5 => Có 1 cách chọn d và 6 cách chọn c

=> Có 1.7+ 1.6=13 (số chia hết cho 5)

\(\Rightarrow n\left(B\right)=13\Rightarrow p\left(B\right)=\dfrac{13}{49}\)

c/ Các số chia hết cho 9 có dạng \(\overline{ef}\)

\(e+f=9\Rightarrow\left(e;f\right)=\left(2;7\right);\left(3;6\right);\left(4;5\right)\)

\(\Rightarrow co:2!.3=6\left(so-chia-het-cho-9\right)\)

\(\Rightarrow n\left(C\right)=6\Rightarrow p\left(C\right)=\dfrac{6}{49}\)

8 tháng 8 2019

Chọn D

*) Ta có: 

*) Tính n(A): Giả sử 8 chữ số được viết vào 8 ô trống được đánh số từ 1 đến 8

TH1: Xếp bất kỳ

Xếp hai chữ số 1, hai chữ số 2 và 4 chữ số còn lại: Có (cách).

TH2: Số các cách xếp sao cho không thỏa mãn yêu cầu bài toán

Xếp hai chữ số 1 đứng liền nhau: Có  cách.

Xếp hai chữ số 2 đứng liền nhau: Có  cách.

Số các cách xếp thuộc cả hai trường hợp trên:

+ Coi hai chữ số 1đứng liền nhau là nhóm X, hai chữ số 2 đứng liền nhau là nhóm Y

+ Xếp X, Y và 4 số còn lại có:  (cách)

Vậy số cách xếp không thỏa mãn yêu cầu là:  (cách)

Vậy 

16 tháng 10 2021

còn cái nịt

7 tháng 2 2019

31 tháng 1 2017

Chọn C

Ta có 

Gọi số tự nhiên cần tìm có bốn chữ số là  a b c d ¯

Vì  a b c d ¯  chia hết cho 11 nên (a + c) - (b + d)  ⋮ 11

=> (a + c) - (b + d) = 0 hoặc (a + c) - (b + d) = 11 hoặc (a + c) - (b + d) = -11 do 

Theo đề bài ta cũng có a + b + c + d chia hết cho 11

Mà 

hoặc 

Vì  nên  (a + c) - (b + d) và a + b + c + d cùng tính chẵn, lẻ 

(do các trường hợp còn lại không thỏa mãn) => (a,c) và (b,d) là một trong các cặp số: 

- Chọn 2 cặp trong số 4 cặp trên ta có C 4 2  cách.

- Ứng với mỗi cách trên có 4 cách chọn a; 1 cách chọn c; 2 cách chọn b; 1 cách chọn  d.

Vậy xác suất cần tìm là 

22 tháng 10 2018

Chọn B

Số phần tử của tập hợp E là 

Vì 

 chia hết cho 3 nên khi lấy ra 6 chữ số thỏa điều kiện ta phải loại  ra một số chia hết cho 3. Ta có 3 trường hợp sau:

1) Trường hợp 1:

Loại bỏ số 0, khi đó a + b = c + d = e + f = 7

Bước 1: Chia ra làm 3 cặp số có tổng bằng 7 là : (1;6), (2;5), (3;4) có 1 cách chia.

Bước 2: Chọn a có 6 cách; chọn b có 1 cách; chọn c có 4 cách; chọn d có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 6.1.4.1.2.1 = 48 cách.

Trường hợp này có 48 số.

 

2) Trường hợp 2:

Loại bỏ số 3, khi đó a + b = c + d = e + f = 6

Bước 1: Chia ra làm 3 cặp số có tổng bằng 6 là : (0;6), (1;5), (2;4) có 1 cách chia.

Bước 2: Chọn a có 5 cách (vì có số 0); chọn b có 1 cách; chọn c có 4 cách; chọn d  có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 5.1.4.1.2.1 = 40 cách.

 

Trường hợp này có 40 số.

3) Trường hợp 3:

 

Loại bỏ số 6, khi đó a + b = c + d = e + f = 5. Tương tự như trường hợp 2, có 40 số.

Vậy trong tập hợp E có tất cả 48 +  40 + 40 = 128 số có dạng a b c d e f ¯  sao cho  a + b = c + d = e + f

Xác suất cần tìm là: 

NV
17 tháng 9 2021

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

\(\Rightarrow\) d có 5 cách chọn (từ 1;3;5;7;9)

a có 8 cách chọn (khác 0 và d)

b có 8 cách chọn (khác a và d)

c có 7 cách chọn (khác a;b;c)

\(\Rightarrow\) có \(5.8.8.7=2240\) số