\(\left\{k^2+1,k\in Z,\left|k\right|\le2\right\}\). Xác định số phần tử c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 8 2021

\(\left\{{}\begin{matrix}k\in Z\\\left|k\right|\le2\end{matrix}\right.\) \(\Rightarrow k=\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow X=\left\{1;2;5\right\}\)

\(\Rightarrow X\) có 3 phần tử

12 tháng 9 2019

A={-1} (vì x thuộc Z)

B={-3,-1,1,3,5} (thay k lần lượt =-2,-1,0,1,2 vào 2k+1)

19 tháng 8 2017

D=\(\left\{-2;-1;0;1;2\right\}\)

F=\(\left\{-20;-15;-10;-5;0;5;10;15;20\right\}\)

I\(\left\{0;3;6;9;12;15\right\}\)

A={0;1/2}

Tập con có hai phần tử của A là {0;1/2}

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

Lời giải:

a)

\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)

\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)

Vậy \(A=\left\{-2;-1;1;2\right\}\)

b)

Các tập con của A mà số phần tử nhỏ hơn 3 là:

\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)

\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)

\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)

Vậy \(A=\left\{-2;-1;1;2\right\}\)

b)

Các tập con của A mà số phần tử nhỏ hơn 3 là:

\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)

\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

A)

\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)

\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)

\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)

\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)

Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

B)

Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)

\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)

\(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)

\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)

Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)

C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)

Ta thấy: \(x=a^2\leq 400\)

\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)

\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)

\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)

\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)

Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)

+)

NV
12 tháng 10 2020

\(\frac{3}{\left|2x-2\right|}\ge\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\\left|2x-2\right|\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\-3\le x-1\le3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\-2\le x\le4\end{matrix}\right.\)

\(F=\left\{-2;-1;0;2;3;4\right\}\)

12 tháng 10 2020

Z

5 tháng 4 2017

a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}

b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}

c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}

18 tháng 9 2019

1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}

Ta có:

(9-x2)(x2-3x+2)=0

\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)

⇒B={-3;1;2;3}

2/ Có 15 tập hợp con có 2 phần tử