K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

Mong mọi người giúp mình

29 tháng 10 2018

Số cách chọn : \(5\times6\times6\times6=1080\)(vì chỉ có 5 cách chọn số đứng đầu)

b) số cách lập số tự nhiên có 4 chữ số :

-Có 5 cách chọn chữ số làm số đầu (1;2;3;4;5) vì số 0 không đứng đầu được

-Có 5 cách chon số thứ hai vì đã chọn 1 số đứng đầu

-Có 4 cách chọn số thứ ba vì đã chọn hai số đầu 

-có 3 cách chon số thứ 4 vì chọn 3 số đầu

Suy ra có số cách chọn : \(5\times5\times4\times3=300\)

8 tháng 4 2018

Đặt A = {1, 2, 3, 4, 5, 6 }

a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.

\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)

b. *Cách 1:

Số chẵn là các số có tận cùng 2, 4, 6

- Gọi số chẵn 6 chữ số khác nhau là abcdef

- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)

Có 5 cách chọn chữ số a;

Có 4 cách chọn chữ số b (b ≠ a)

Có 3 cách chọn chữ số c(c ≠ a, b);

Có 2 cách chọn chữ số d (d ≠ a, b, c);

Có 1 cách chọn chữ số e (e ≠ a, b, c, d);

Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)

*Cách 2:

Với f = 2, 4, 6 có 3 cách chọn f

a, b, c, d, e ≠ f nên có = 5! cách chọn.

Vậy số cách chọn: 5!.3 = 360 (số)

Gọi số lẻ có 6 chữ số a1b1c1d1e1f1

Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.

Vậy ta có: 3.5! = 360 số

c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:

- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn

Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:

n1 = 3 .5! = 360 số.

- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.

Số các số như vậy là: n2 = 2.4! = 48 số

- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:

Số các số như vậy là: n3 = 3! = 6 số

Vậy số các số nhỏ hơn 432.000 là:

n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.