K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

a) Bốn điểm A,B, H, E cùng nằm trên đ­ờng tròn tâm N và HE// CD.
ABHE nội tiếp ⇒ EHCˆ=BAEˆ
mà BCDˆ=BAEˆ
⇒ EHCˆ=BCDˆ
⇒HE//CD

b) M là tâm đ­ường tròn ngoại tiếp tam giác HEF.
Hướng giải
Cần phải cm HM=ME=MF
Nhận thấy NH=NE
⇒ NM là đường trung trực của HE
⇒ cần chứng minh NM vuông góc với HE
mà NM // AC (đường trung bình)
AC vuông góc với CD (góc nội tiếp chắn nửa đường tròn)
lại có CD // HE (cm trên)
Tới đây bài toán được giải quyết.

CM HM =HF cũng tương tự
Cm HF//BD
Gọi L là trung điểm AC
LM là đường trung bình tam giác ABC
....
cm tương tự như trên sẽ có MH = MF =ME
⇒ dpcm 

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
15 tháng 4 2019

bài toán này mik chưa gặp trong chương trình lp 7,có thể đây là toán lp 8 hay lp 9 j đó

19 tháng 4 2019

Giải giúp mình câu d thui ạ !

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

18 tháng 3 2020

Câu hỏi này mà là linh tinh hả bạn( è)

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\)  => ABE=ACF

 => 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

=>AG=HA (hai góc tương ứng )  => Tam giác AGH cân tại A (1)

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  (2)  Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)

b) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)