Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhá
a) +) Xét ΔABD có
BA = BD ( gt)
⇒ Δ ABD cân tại B
+) Xét Δ BHA vuông tại H và Δ BHD vuông tại H có
BA = BD ( gt)
BH: cạnh chung
⇒ ΔBHA = Δ BHD (ch-cgv)
b)+) Ta có \(\left\{{}\begin{matrix}BA=BD\\AE=DC\end{matrix}\right.\)
⇒ BA + AE = BD + DC
⇒ BE = BC
+) Xét Δ BED và ΔBCA có
BE = BC ( cmt)
\(\widehat{ABC}\) : góc chung
BD = BA ( gt)
⇒ ΔDBE = ΔABC (c-g-c)
Lần sau vt đề hẳn hoi ra nhá bạn ơi~~~~
Học tốt ~~~
## Chiyuki Fujito
Bn Quý j đó ơi vẽ hình ra cko mik nha
Vẽ hình mk ms giải đc
a, xét tam giác ABH và tam giác ACK có : góc A chung
góc AKC = góc AHB = 90
AB =AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACK (ch-gn)
b, tam giác ABH = tam giác ACK (Câu a)
=> AK = AH (đn)
AB = AC (câu a)
AK + KB = AB
AH + HC = AC
=> BK = CH
xét tam giác OBK và tam giác OCH có :
góc ABH = góc ACK do tam giác ABH = tam giác ACK (câu a)
góc BKO = góc CHO = 90
=> tam giác OBK = tam giác OCH (cgv-gnk)
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )