K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

1 tháng 2 2018

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

13 tháng 2 2018

Xét tam giác AEC= tam giác ADB(g-c-g)

suy ra AE=AD từ đó BE=DC

13 tháng 2 2018

có CE Cắt BD tại I suy ra AI là p/g suy ra AM vuông góc

1 tháng 2 2018

A A C C B B E E D D I I M M G G J J H H K K

a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Xét tam giác vuông ABE và tam giác vuông ACD có:

AB = AC (gt)

\(\widehat{ABE}=\widehat{ACD}\)

\(\Rightarrow\Delta ABE=\Delta ACD\)  (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BE=CD;AE=AD\)

b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.

Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.

Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)

Từ đó suy ra tam giác AMC vuông cân tại M.

c) Gọi giao điểm của DH, AK với BE lần lượt là J và G. 

Do DH và AK cùng vuông góc với BE nên ta có 

\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)

\(\Rightarrow HK=AD\)

Mà AD = AE nên HK = AE.    (1)

Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)

\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)

Suy ra AG là phân giác góc IAE.

Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)

\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)    

Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE  (2)

Từ (1) và (2) suy ra HK = KC.

21 tháng 8 2018

a, Xét \(\Delta ABE\)và \(\Delta ACD\)có :

AB = AC (gt)

\(\widehat{BAE}\)\(\widehat{CAD\left(gt\right)}\)

\(\widehat{ACD}\)=\(\widehat{ABE}\)\(\Delta ABC\)vuông => \(\widehat{ACB}\)=\(\widehat{ABC}\)\(\widehat{ACD}\)\(\frac{1}{2}\widehat{ACB}\)\(\widehat{ABE}\)=\(\frac{1}{2}\widehat{ABC}\))

=> \(\Delta ABE=\Delta ACD\left(g-c-g\right)\)

\(\Rightarrow BE=CD\)( 2 góc t.ứng )

\(\Rightarrow AD=AE\)( ________)

b, Ta có : CD là tian p/g của \(\widehat{ACB}\)

               BE ___________\(\widehat{ABC}\)

mà \(\Delta ABC\)là \(\Delta\)cân, I là GĐ của DC & EB

=> AM là đường p/g đồng thời là đường cao của \(\widehat{BAC}\)

=> \(AM\perp BC\left(1\right)\)

Am là đường p/g => AM là đường trung tuyến của \(\widehat{BAC}\)

                            => \(AM=\frac{1}{2}BC,MC=\frac{1}{2}BC\)

=> AM = MC ( 2 )

Từ (1) & (2) => \(\Delta AMC\)vuông cân

Ta có : \(BM=\frac{1}{2}BC\)mà \(AM=\frac{1}{2}BC\)

=> BM = AM ( 3 0

Từ ( 1 ) & ( 3 ) => \(\Delta AMC\)vuông cân

c, Nối EK cắt DC ở F

   ___EH , giao điểm của BE & AK là H

Xét \(\Delta ABK\)có :

AH là tia p/g đồng thời là đường cao

=> \(\Delta ABH\)cân => AB = BK

Xét \(\Delta ABE\)\(\Delta AKE\)có :

 AB = BK ( cmt )

 \(\widehat{ABE}\)\(\widehat{KBE}\)( BE là tia p/g \(\widehat{HBK}\))

BE chung ( gt )

=> \(\Delta ABE=\Delta AKE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAE}\)\(\widehat{BKE}\)( 2 góc t.ứng ) \(\Rightarrow\widehat{BKE}\)= 90o

Mà \(\widehat{KEC}\)\(\widehat{KCE}\)= 45o ( tổng 3 góc trong 1 \(\Delta\))

\(\Rightarrow\Delta KEC\)vuông cân => KE = KC

CM \(\Delta EKH\)vuông cân => KE=KH

=> KH= KC ( đpcm )

a) Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC vuông cân tại A)

nên \(\widehat{ABE}=\widehat{ACD}\)

Xét ΔABE vuông tại A và ΔACD vuông tại A có 

AB=AC(ΔABC vuông cân tại A)

\(\widehat{ABE}=\widehat{ACD}\)(cmt)

Do đó: ΔABE=ΔACD(cạnh góc vuông-góc nhọn kề)

Suy ra: BE=CD(Hai cạnh tương ứng) và AE=AD(Hai cạnh tương ứng)

29 tháng 3 2016

gócDCB=gócEBC=góc1/2ACB=góc1/2ABC

a)xét tg DCB và tg EBC có

BC là cạnh  chung

góc B=góc C

góc DCB=góc EBC

suy ra  tg DCB = tg EBC(g.c.g)

suy ra CD=BE(hai cạnh tương ứng)

xét tgADC và tgAEB có 

góc A là góc chung là góc vuông

AB=AC

DC=EB

suy ra tgADC = tgAEB (ch.cgv)

suy ra AD=AE(hai cạnh tương ứng)

câu b và câu c k xong đi rồi nói

a) Ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACD}=\widehat{BCD}=\dfrac{\widehat{ACB}}{2}\)(CD là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔBAC cân tại A)

nên \(\widehat{ABE}=\widehat{CBE}=\widehat{ACD}=\widehat{BCD}\)

Xét ΔADC vuông tại A và ΔAEB vuông tại A có 

AC=AB(ΔABC vuông cân tại A)

\(\widehat{ACD}=\widehat{ABE}\)(cmt)

Do đó: ΔADC=ΔAEB(Cạnh góc vuông-góc nhọn kề)

Suy ra: AD=AE(Hai cạnh tương ứng) và CD=BE(Hai cạnh tương ứng)